Abstract
The relationship between enumeration degrees and abstract models of computability inspires a new direction in the field of computable structure theory. Computable structure theory uses the notions and methods of computability theory in order to find the effective contents of some mathematical problems and constructions. The paper is a survey on the computable structure theory from the point of view of enumeration reducibility.
This research was supported by Sofia university Science Fund, contract 54/12.04.2016. The second author was also supported by the L’Oréal-UNESCO program “For women in science”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note, that this indexing does not quite match the usual definition of computable infinitary formulas, namely level zero in this definition corresponds to level one in the usual definition.
- 2.
Theorem 17 was first announced by Soskov during his LC talk in Münster in 2002.
References
Arslanov, M.M., Cooper, S.B., Kalimullin, I.S.: Splitting properties of total enumeration degrees. Algebra Logic 42, 1–13 (2003)
Ash, C.J.: Generalizations of enumeration reducibility using recursive infinitary propositional senetences. Ann. Pure Appl. Logic 58, 173–184 (1992)
Ash, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy, Volume 144. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (2000)
Ash, C.J., Knight, J.F., Manasse, M., Slaman, T.: Generic copies of countable structures. Ann. Pure Appl. Logic 42, 195–205 (1989)
Baleva, V.: The jump operation for structure degrees. Arch. Math. Logic 45, 249–265 (2006)
Barwise, J.: Admissible Sets and Structures. Springer, Berlin (1975)
Boutchkova, V.: Genericity in abstract structure degrees. Ann. Sofia Univ. Fac. Math. Inf. 95, 35–44 (2001)
Cai, M., Ganchev, H.A., Lempp, S., Miller, J.S., Soskova, M.I.: Defining totality in the enumeration degrees. J. Am. Math. Soc. http://dx.doi.org/10.1090/jams/848
Case, J.: Enumeration reducibility and partial degrees. Ann. Math. Logic 2, 419–439 (1971)
Chisholm, J.: Effective model theory vs. recursive model theory. J. Symbol. Logic 55, 1168–1191 (1990)
Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. Bull. Lond. Math. Soc. 62, 641–649 (2000)
Cooper, S.B.: Partial degrees and the density problem. Part 2: the enumeration degrees of the \(\Sigma _2\) sets are dense. J. Symbol. Logic 49, 503–513 (1984)
Downey, R.G.: On presentations of algebraic structures. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory. Lecture Notes in Pure and Applied Mathematics, vol. 187, pp. 157–205 (1997)
Downey, R.G., Knight, J.F.: Orderings with \(\alpha \)-th jump degree \({\bf {0}}^{(\alpha )}\). Proc. Am. Math. Soc. 114, 545–552 (1992)
Enderton, H.B., Putnam, H.: A note on the hyperarithmetical hierarchy. J. Symbol. Logic 35, 429–430 (1970)
Ershov, Y.L.: \(\Sigma \)-denability in admissible sets. Sov. Math. Dokl. 3, 767–770 (1985)
Ershov, Y.L.: Definability and Computability. Consultants Bureau, New York-London-Moscow (1996)
Ershov, Y., Puzarenko, V.G., Stukachev, A.I.: HF-computability. In: Cooper, B.S., Sorbi, A. (eds.) Computability in Context Computation and Logic in the Real World, pp. 169–242. Imperial College Press (2011)
Fraisse, R.: Une notion de recursivite relative. In: Proceedings of the Symposium of Mathematics 1959, Infinistic Methods, pp. 323–328. Pergamon Press, Warsaw (1961)
Friedberg, R.M., Rogers Jr., H.: Reducibility and completeness for sets of integers. Z. Math. Logik Grundlag. Math. 5, 117–125 (1959)
Friedman, H.: Algorithmic procedures, generalized turing algorithms and elementary recursion theory. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium-69, pp. 361–389. North-Holland, Amsterdam (1971)
Ganchev, H.: A total degree splitting theorem and a jump inversion splitting theorem. In: Proceedings of the 5th Panhellenic Logic Symposium, Athens, Greece, pp. 79–81 (2005)
Ganchev, H.: Exact pair theorem for the \(\omega \)-enumeration degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 316–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9_33
Ganchev, H.: A jump inversion theorem for the infinite enumeration jump. Ann. Univ. Sofia Univ. 98, 61–85 (2008)
Ganchev, H.: Definability in the local theory of the \(\omega \)-enumeration degrees. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 242–249. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03073-4_25
Ganchev, H., Soskov, I.N.: The groups Aut(\(\mathcal{D}^{\prime }_{\omega }\)) and Aut(\(\mathcal{D}_e\)) are isomorphic. In: Proceedings of the 6th Panhellenic Logic Symposium, Volos, Greece, pp. 53–57 (2007)
Ganchev, H., Soskov, I.N.: The jump operator on the \(\omega \)-enumeration degrees. Ann. Pure Appl. Logic 160, 289–301 (2009)
Ganchev, H., Soskova, M.: The high/low hierarchy in the local structure of the \(\omega \)-enumeration degrees. Ann. Pure Appl. Logic 163(5), 547–566 (2012)
Ganchev, H.A., Soskova, M.I.: Interpreting true arithmetic in the local structure of the enumeration degrees. J. Symbol. Log. 77(4), 1184–1194 (2012)
Ganchev, H.A., Soskova, M.I.: Definability via Kalimullin pairs in the structure of the enumeration degrees. Trans. AMS 367, 4873–4893 (2015)
Goncharov, S., Khoussainov, B.: Complexity of categorical theories with computable models. Algebra Logic 43(6), 365–373 (2004)
Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.: Enumerations in computable structure theory. Ann. Pure Appl. Logic 136(3), 219–246 (2005)
Greenberg, N., Montalbán, A., Slaman, T.A.: Relative to any non-hyperarithmetic set. J. Math. Logic 13(01) (2013). doi:10.1142/S0219061312500079
Gordon, C.: Comparisons between some generalizations of recursion theory. Compos. Math. 22, 333–346 (1970)
Harris, K., Montabán, A.: On the \(n\)-back-and-forth types of Boolean algebras. Trans. AMS 364, 827–866 (2012)
Jojgov, G.: Minimal pairs of structure degrees. Master’s thesis, Sofia University (1997)
Jockusch Jr., C.G.: Semirecursive sets and positive reducibility. Trans. Am. Math. Soc. 131, 420–436 (1968)
Kalimullin, I.: Some notes on degree spectra of the structures. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 389–397. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9_40
Kalimullin, I.S.: Enumeration degrees and enumerability of families. J. Logic Comput. 19(1), 151–158 (2009)
Knight, J.F.: Degrees coded in jumps of orderings. J. Symbol. Logic 51, 1034–1042 (1986)
Knight, J.F.: Degrees of models. In: Handbook of Recursive Mathematics, Volume 1, Studies Logic Foundations of Mathematics, vol. 138, pp. 289–309. North-Holland, Amsterdam (1998)
Kreisel, G.: Some reasons for generalizing recursion theory. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium 69, pp. 139–198. North Holland (1971)
Kreisel, G., Sacks, G.E.: Metarecursive sets. J. Symbol. Logic 30, 318–338 (1965)
Kripke, S.: Transfinite recursion on admissible ordinals, I, II (abstracts). J. Symbol. Logic 29, 161–162 (1964)
Lacombe, D.: Deux generalizations de la notion de recursivite relative. C. R. de l-Academie des Sciences de Paris 258, 3410–3413 (1964)
Lempp, S., Slaman, T.A., Sorbi, A.: On extensions of embeddings into the enumeration degrees of the \(\Sigma ^0_2\)-sets. J. Math. Log. 5(2), 247–298 (2005)
Marker, D.: Non \(\Sigma _n\)-axiomatizable almost strongly minimal theories. J. Symbol. Logic 54(3), 921–927 (1989)
McEvoy, K.: Jumps of quasi-minimal enumeration degrees. J. Symbol. Logic 50, 839–848 (1985)
Medvedev, I.T.: Degrees of difficulty of the mass problem. Dokl. Nauk. SSSR 104, 501–504 (1955)
Montalbán, A.: Notes on the jump of a structure. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 372–378. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03073-4_38
Montalbán, A.: Rice sequences of relations. Philos. Trans. R. Soc. A 370, 3464–3487 (2012)
Montalbán, A.: Computable Structure Theory, draft
Montague, R.: Recursion theory as a branch of model theory. In: Proceedings of the Third International Congress for Logic Methodology and Philosophy of Science, pp. 63–86. North-Holland, Amsterdam-London (1967)
Moschovakis, Y.N.: Abstract first order computability I. Trans. Am. Math. Soc. 138, 427–464 (1969)
Moschovakis, Y.N.: Elementary Induction of Abstract Structures. North-Holland, Amsterdam (1974)
Moschovakis, Y.N.: Abstract computability and invariant definability. J. Symbol. Logic 34, 605–633 (1969)
Myhill, J.: A note on the degrees of partial functions. Proc. Am. Math. Soc. 12, 519–521 (1961)
Platek, R.: Foundations of recursion theory. Ph.D. thesis, Stanford University (1966)
Plotkin, G.D.: A set-theoretical definition of application Memorandum MIP-R-95. University of Edinburgh, School of Artificial Intelligence (1972)
Richter, L.J.: Degrees of unsolvability of models. Ph.D. dissertation, University of Illinois, Urbana-Champaign (1977)
Richter, L.J.: Degrees of structures. J. Symbol. Logic 46, 723–731 (1981)
Rozinas, M.: The semi-lattice of e-degrees. In: Recursive functions (Ivanovo), pp. 71–84. Ivano. Gos. Univ. (1978). (Russian)
Sacks, G.E.: Forcing with perfect closed sets. Proc. Symp. Pure Math. 17, 331–355 (1971)
Selman, A.L.: Arithmetical reducibilities I. Z. Math. Logik Grundlag. Math. 17, 335–350 (1971)
Shepherdson, J.C.: Computation over abstract structures. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium-73, pp. 445–513. North-Holland, Amsterdam (1975)
Skordev, D.G.: Computability in Combinatory Spaces. Kluwer Academic Publishers, Dordrecht-Boston-London (1992)
Slaman, T.A.: Relative to any nonrecursive set. Proc. Am. Math. Soc. 126, 2117–2122 (1998)
Slaman, T.A., Sorbi, A.: Quasi-minimal enumeration degrees and minimal Turing degrees. Annali di Matematica 174(4), 79–88 (1998)
Soskov, I.N.: Definability via enumerations. J. Symbol. Logic 54, 428–440 (1989)
Soskov, I.N.: An external characterization of the Prime computability. Ann. Univ. Sofia Fac. Math. Inf. 83, 89–111 (1989)
Soskov, I.N.: Computability by means of effectively definable schemes and definability via enumerations. Arch. Math. Logic 29, 187–200 (1990)
Soskov, I.N.: Constructing minimal pairs of degrees. Ann. Univ. Sofia 91, 101–112 (1997)
Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39, 417–437 (2000)
Soskov, I.N., Baleva, V.: Regular enumerations. J. Symbol. Logic 67, 1323–1343 (2002)
Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96, 45–68 (2004)
Soskov, I.N., Baleva, V.: Ash’s theorem for abstract structures. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002, Muenster, Germany, pp. 327–341. Association for Symbolic Logic (2006)
Soskov, I.N., Kovachev, B.: Uniform regular enumerations. Math. Struct. Comput. Sci. 16(5), 901–924 (2006)
Soskov, I.N.: The \(\omega \)-enumeration degrees. J. Logic Comput. 17, 1193–1217 (2007)
Soskov, I., Soskova, M.: Kalimullin pairs of \(\Sigma ^0_2\) omega-enumeration degrees. Int. J. Softw. Inf. 5(4), 637–658 (2011)
Soskov, I.N.: A note on \(\omega \)-jump inversion of degree spectra of structures. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 365–370. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39053-1_43
Soskov, I.N.: Effective properties of Marker’s extensions. J. Logic Comput. 23(6), 1335–1367 (2013). doi:10.1093/logcom/ext041
Soskova, A.A., Soskov, I.N.: Co-spectra of joint spectra of structures. Ann. Sofia Univ. Fac. Math. Inf. 96, 35–44 (2004)
Soskova, A.A.: Minimal pairs and quasi-minimal degrees for the joint spectra of structures. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 451–460. Springer, Heidelberg (2005). doi:10.1007/11494645_56
Soskova, A.A.: Properties of co-spectra of joint spectra of structures. Ann. Sofia Univ. Fac. Math. Inf. 97, 15–32 (2005)
Soskova, A.A.: Relativized degree spectra. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 546–555. Springer, Heidelberg (2006). doi:10.1007/11780342_56
Soskova, A.A.: Relativized degree spectra. J. Logic Comput. 17, 1215–1234 (2007)
Soskova, A.A.: A jump inversion theorem for the degree spectra. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 716–726. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9_76
Soskova, A.A., Soskov, I.N.: Jump spectra of abstract structures. In: Proceeding of the 6th Panhellenic Logic Symposium, Volos, Greece, pp. 114–117 (2007)
Soskova, A.A.: \(\omega \)-degree spectra. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 544–553. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69407-6_58
Soskova, A.A., Soskov, I.N.: A jump inversion theorem for the degree spectra. J. Logic Comput. 19, 199–215 (2009)
Soskova, A., Soskov, I.N.: Quasi-minimal degrees for degree spectra. J. Logic Comput. 23(2), 1319–1334 (2013). doi:10.1093/logcom/ext045
Soskova, M., Soskov, I.: Embedding countable partial orderings in the enumeration degrees and the omega enumeration degrees. J. Logic Comput. 22(4), 927–952 (2012). doi:10.1093/logcom/exq051. First published online October 23, 2010
Stukachev, A.I.: A jump inversion theorem for semilattices of \(\Sigma \)-degrees. Sib. \(\grave{E}\)lektron. Mat. Izv. 6, 182–190 (2009)
Stukachev, A.I.: A jump inversion theorem for the semilattices of Sigma-degrees. Siberian Adv. Math. 20(1), 68–74 (2010)
Stukachev, A.I.: Effective model theory: an approach via \(\Sigma \)-definability. In: Greenberg, N., Hamkins, J.D., Hirschfeldt, D., Miller, R. (eds.) Effective Mathematics of the Uncountable. Lecture Notes in Logic, vol. 41, pp. 164–197 (2013)
Vatev, S.: Omega spectra and co-spectra of structures. Master thesis, Sofia University (2008)
Vatev, S.: Conservative extensions of abstract structures. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 300–309. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21875-0_32
Vatev, S.: Another jump inversion theorem for structures. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 414–423. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39053-1_49
Vatev, S.: Effective properties of structures in the hyperarithmetical hierarchy. Ph.D. thesis, Sofia University (2014)
Vatev, S.: On the notion of jump structure. Ann. Sofia Univ. Fac. Math. Inf. 102, 171–206 (2015)
Wehner, St.: Enumerations, countable structures and turing degrees. Proc. Am. Math. Soc. 126, 2131–2139 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Soskova, A.A., Soskova, M.I. (2017). Enumeration Reducibility and Computable Structure Theory. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-50062-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50061-4
Online ISBN: 978-3-319-50062-1
eBook Packages: Computer ScienceComputer Science (R0)