Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enumeration Reducibility and Computable Structure Theory

  • Chapter
  • First Online:
Computability and Complexity

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

The relationship between enumeration degrees and abstract models of computability inspires a new direction in the field of computable structure theory. Computable structure theory uses the notions and methods of computability theory in order to find the effective contents of some mathematical problems and constructions. The paper is a survey on the computable structure theory from the point of view of enumeration reducibility.

This research was supported by Sofia university Science Fund, contract 54/12.04.2016. The second author was also supported by the L’Oréal-UNESCO program “For women in science”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note, that this indexing does not quite match the usual definition of computable infinitary formulas, namely level zero in this definition corresponds to level one in the usual definition.

  2. 2.

    Theorem 17 was first announced by Soskov during his LC talk in Münster in 2002.

References

  1. Arslanov, M.M., Cooper, S.B., Kalimullin, I.S.: Splitting properties of total enumeration degrees. Algebra Logic 42, 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ash, C.J.: Generalizations of enumeration reducibility using recursive infinitary propositional senetences. Ann. Pure Appl. Logic 58, 173–184 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ash, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy, Volume 144. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (2000)

    MATH  Google Scholar 

  4. Ash, C.J., Knight, J.F., Manasse, M., Slaman, T.: Generic copies of countable structures. Ann. Pure Appl. Logic 42, 195–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baleva, V.: The jump operation for structure degrees. Arch. Math. Logic 45, 249–265 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barwise, J.: Admissible Sets and Structures. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  7. Boutchkova, V.: Genericity in abstract structure degrees. Ann. Sofia Univ. Fac. Math. Inf. 95, 35–44 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Cai, M., Ganchev, H.A., Lempp, S., Miller, J.S., Soskova, M.I.: Defining totality in the enumeration degrees. J. Am. Math. Soc. http://dx.doi.org/10.1090/jams/848

  9. Case, J.: Enumeration reducibility and partial degrees. Ann. Math. Logic 2, 419–439 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chisholm, J.: Effective model theory vs. recursive model theory. J. Symbol. Logic 55, 1168–1191 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. Bull. Lond. Math. Soc. 62, 641–649 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cooper, S.B.: Partial degrees and the density problem. Part 2: the enumeration degrees of the \(\Sigma _2\) sets are dense. J. Symbol. Logic 49, 503–513 (1984)

    Article  MATH  Google Scholar 

  13. Downey, R.G.: On presentations of algebraic structures. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory. Lecture Notes in Pure and Applied Mathematics, vol. 187, pp. 157–205 (1997)

    Google Scholar 

  14. Downey, R.G., Knight, J.F.: Orderings with \(\alpha \)-th jump degree \({\bf {0}}^{(\alpha )}\). Proc. Am. Math. Soc. 114, 545–552 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Enderton, H.B., Putnam, H.: A note on the hyperarithmetical hierarchy. J. Symbol. Logic 35, 429–430 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ershov, Y.L.: \(\Sigma \)-denability in admissible sets. Sov. Math. Dokl. 3, 767–770 (1985)

    MATH  Google Scholar 

  17. Ershov, Y.L.: Definability and Computability. Consultants Bureau, New York-London-Moscow (1996)

    Google Scholar 

  18. Ershov, Y., Puzarenko, V.G., Stukachev, A.I.: HF-computability. In: Cooper, B.S., Sorbi, A. (eds.) Computability in Context Computation and Logic in the Real World, pp. 169–242. Imperial College Press (2011)

    Google Scholar 

  19. Fraisse, R.: Une notion de recursivite relative. In: Proceedings of the Symposium of Mathematics 1959, Infinistic Methods, pp. 323–328. Pergamon Press, Warsaw (1961)

    Google Scholar 

  20. Friedberg, R.M., Rogers Jr., H.: Reducibility and completeness for sets of integers. Z. Math. Logik Grundlag. Math. 5, 117–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Friedman, H.: Algorithmic procedures, generalized turing algorithms and elementary recursion theory. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium-69, pp. 361–389. North-Holland, Amsterdam (1971)

    Google Scholar 

  22. Ganchev, H.: A total degree splitting theorem and a jump inversion splitting theorem. In: Proceedings of the 5th Panhellenic Logic Symposium, Athens, Greece, pp. 79–81 (2005)

    Google Scholar 

  23. Ganchev, H.: Exact pair theorem for the \(\omega \)-enumeration degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 316–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9_33

    Chapter  Google Scholar 

  24. Ganchev, H.: A jump inversion theorem for the infinite enumeration jump. Ann. Univ. Sofia Univ. 98, 61–85 (2008)

    MathSciNet  Google Scholar 

  25. Ganchev, H.: Definability in the local theory of the \(\omega \)-enumeration degrees. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 242–249. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03073-4_25

    Chapter  Google Scholar 

  26. Ganchev, H., Soskov, I.N.: The groups Aut(\(\mathcal{D}^{\prime }_{\omega }\)) and Aut(\(\mathcal{D}_e\)) are isomorphic. In: Proceedings of the 6th Panhellenic Logic Symposium, Volos, Greece, pp. 53–57 (2007)

    Google Scholar 

  27. Ganchev, H., Soskov, I.N.: The jump operator on the \(\omega \)-enumeration degrees. Ann. Pure Appl. Logic 160, 289–301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ganchev, H., Soskova, M.: The high/low hierarchy in the local structure of the \(\omega \)-enumeration degrees. Ann. Pure Appl. Logic 163(5), 547–566 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ganchev, H.A., Soskova, M.I.: Interpreting true arithmetic in the local structure of the enumeration degrees. J. Symbol. Log. 77(4), 1184–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ganchev, H.A., Soskova, M.I.: Definability via Kalimullin pairs in the structure of the enumeration degrees. Trans. AMS 367, 4873–4893 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goncharov, S., Khoussainov, B.: Complexity of categorical theories with computable models. Algebra Logic 43(6), 365–373 (2004)

    Article  MathSciNet  Google Scholar 

  32. Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.: Enumerations in computable structure theory. Ann. Pure Appl. Logic 136(3), 219–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Greenberg, N., Montalbán, A., Slaman, T.A.: Relative to any non-hyperarithmetic set. J. Math. Logic 13(01) (2013). doi:10.1142/S0219061312500079

  34. Gordon, C.: Comparisons between some generalizations of recursion theory. Compos. Math. 22, 333–346 (1970)

    MathSciNet  MATH  Google Scholar 

  35. Harris, K., Montabán, A.: On the \(n\)-back-and-forth types of Boolean algebras. Trans. AMS 364, 827–866 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jojgov, G.: Minimal pairs of structure degrees. Master’s thesis, Sofia University (1997)

    Google Scholar 

  37. Jockusch Jr., C.G.: Semirecursive sets and positive reducibility. Trans. Am. Math. Soc. 131, 420–436 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kalimullin, I.: Some notes on degree spectra of the structures. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 389–397. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9_40

    Chapter  Google Scholar 

  39. Kalimullin, I.S.: Enumeration degrees and enumerability of families. J. Logic Comput. 19(1), 151–158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Knight, J.F.: Degrees coded in jumps of orderings. J. Symbol. Logic 51, 1034–1042 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Knight, J.F.: Degrees of models. In: Handbook of Recursive Mathematics, Volume 1, Studies Logic Foundations of Mathematics, vol. 138, pp. 289–309. North-Holland, Amsterdam (1998)

    Google Scholar 

  42. Kreisel, G.: Some reasons for generalizing recursion theory. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium 69, pp. 139–198. North Holland (1971)

    Google Scholar 

  43. Kreisel, G., Sacks, G.E.: Metarecursive sets. J. Symbol. Logic 30, 318–338 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kripke, S.: Transfinite recursion on admissible ordinals, I, II (abstracts). J. Symbol. Logic 29, 161–162 (1964)

    Google Scholar 

  45. Lacombe, D.: Deux generalizations de la notion de recursivite relative. C. R. de l-Academie des Sciences de Paris 258, 3410–3413 (1964)

    MathSciNet  MATH  Google Scholar 

  46. Lempp, S., Slaman, T.A., Sorbi, A.: On extensions of embeddings into the enumeration degrees of the \(\Sigma ^0_2\)-sets. J. Math. Log. 5(2), 247–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Marker, D.: Non \(\Sigma _n\)-axiomatizable almost strongly minimal theories. J. Symbol. Logic 54(3), 921–927 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. McEvoy, K.: Jumps of quasi-minimal enumeration degrees. J. Symbol. Logic 50, 839–848 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Medvedev, I.T.: Degrees of difficulty of the mass problem. Dokl. Nauk. SSSR 104, 501–504 (1955)

    MathSciNet  Google Scholar 

  50. Montalbán, A.: Notes on the jump of a structure. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 372–378. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03073-4_38

    Chapter  Google Scholar 

  51. Montalbán, A.: Rice sequences of relations. Philos. Trans. R. Soc. A 370, 3464–3487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Montalbán, A.: Computable Structure Theory, draft

    Google Scholar 

  53. Montague, R.: Recursion theory as a branch of model theory. In: Proceedings of the Third International Congress for Logic Methodology and Philosophy of Science, pp. 63–86. North-Holland, Amsterdam-London (1967)

    Google Scholar 

  54. Moschovakis, Y.N.: Abstract first order computability I. Trans. Am. Math. Soc. 138, 427–464 (1969)

    MathSciNet  MATH  Google Scholar 

  55. Moschovakis, Y.N.: Elementary Induction of Abstract Structures. North-Holland, Amsterdam (1974)

    MATH  Google Scholar 

  56. Moschovakis, Y.N.: Abstract computability and invariant definability. J. Symbol. Logic 34, 605–633 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  57. Myhill, J.: A note on the degrees of partial functions. Proc. Am. Math. Soc. 12, 519–521 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  58. Platek, R.: Foundations of recursion theory. Ph.D. thesis, Stanford University (1966)

    Google Scholar 

  59. Plotkin, G.D.: A set-theoretical definition of application Memorandum MIP-R-95. University of Edinburgh, School of Artificial Intelligence (1972)

    Google Scholar 

  60. Richter, L.J.: Degrees of unsolvability of models. Ph.D. dissertation, University of Illinois, Urbana-Champaign (1977)

    Google Scholar 

  61. Richter, L.J.: Degrees of structures. J. Symbol. Logic 46, 723–731 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rozinas, M.: The semi-lattice of e-degrees. In: Recursive functions (Ivanovo), pp. 71–84. Ivano. Gos. Univ. (1978). (Russian)

    Google Scholar 

  63. Sacks, G.E.: Forcing with perfect closed sets. Proc. Symp. Pure Math. 17, 331–355 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  64. Selman, A.L.: Arithmetical reducibilities I. Z. Math. Logik Grundlag. Math. 17, 335–350 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  65. Shepherdson, J.C.: Computation over abstract structures. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium-73, pp. 445–513. North-Holland, Amsterdam (1975)

    Google Scholar 

  66. Skordev, D.G.: Computability in Combinatory Spaces. Kluwer Academic Publishers, Dordrecht-Boston-London (1992)

    Book  MATH  Google Scholar 

  67. Slaman, T.A.: Relative to any nonrecursive set. Proc. Am. Math. Soc. 126, 2117–2122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Slaman, T.A., Sorbi, A.: Quasi-minimal enumeration degrees and minimal Turing degrees. Annali di Matematica 174(4), 79–88 (1998)

    MathSciNet  MATH  Google Scholar 

  69. Soskov, I.N.: Definability via enumerations. J. Symbol. Logic 54, 428–440 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  70. Soskov, I.N.: An external characterization of the Prime computability. Ann. Univ. Sofia Fac. Math. Inf. 83, 89–111 (1989)

    MathSciNet  MATH  Google Scholar 

  71. Soskov, I.N.: Computability by means of effectively definable schemes and definability via enumerations. Arch. Math. Logic 29, 187–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  72. Soskov, I.N.: Constructing minimal pairs of degrees. Ann. Univ. Sofia 91, 101–112 (1997)

    MATH  Google Scholar 

  73. Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39, 417–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Soskov, I.N., Baleva, V.: Regular enumerations. J. Symbol. Logic 67, 1323–1343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  75. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96, 45–68 (2004)

    MathSciNet  MATH  Google Scholar 

  76. Soskov, I.N., Baleva, V.: Ash’s theorem for abstract structures. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002, Muenster, Germany, pp. 327–341. Association for Symbolic Logic (2006)

    Google Scholar 

  77. Soskov, I.N., Kovachev, B.: Uniform regular enumerations. Math. Struct. Comput. Sci. 16(5), 901–924 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  78. Soskov, I.N.: The \(\omega \)-enumeration degrees. J. Logic Comput. 17, 1193–1217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Soskov, I., Soskova, M.: Kalimullin pairs of \(\Sigma ^0_2\) omega-enumeration degrees. Int. J. Softw. Inf. 5(4), 637–658 (2011)

    Google Scholar 

  80. Soskov, I.N.: A note on \(\omega \)-jump inversion of degree spectra of structures. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 365–370. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39053-1_43

    Chapter  Google Scholar 

  81. Soskov, I.N.: Effective properties of Marker’s extensions. J. Logic Comput. 23(6), 1335–1367 (2013). doi:10.1093/logcom/ext041

    Article  MathSciNet  MATH  Google Scholar 

  82. Soskova, A.A., Soskov, I.N.: Co-spectra of joint spectra of structures. Ann. Sofia Univ. Fac. Math. Inf. 96, 35–44 (2004)

    MathSciNet  MATH  Google Scholar 

  83. Soskova, A.A.: Minimal pairs and quasi-minimal degrees for the joint spectra of structures. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 451–460. Springer, Heidelberg (2005). doi:10.1007/11494645_56

    Chapter  Google Scholar 

  84. Soskova, A.A.: Properties of co-spectra of joint spectra of structures. Ann. Sofia Univ. Fac. Math. Inf. 97, 15–32 (2005)

    MathSciNet  Google Scholar 

  85. Soskova, A.A.: Relativized degree spectra. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 546–555. Springer, Heidelberg (2006). doi:10.1007/11780342_56

    Chapter  Google Scholar 

  86. Soskova, A.A.: Relativized degree spectra. J. Logic Comput. 17, 1215–1234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  87. Soskova, A.A.: A jump inversion theorem for the degree spectra. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 716–726. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9_76

    Chapter  Google Scholar 

  88. Soskova, A.A., Soskov, I.N.: Jump spectra of abstract structures. In: Proceeding of the 6th Panhellenic Logic Symposium, Volos, Greece, pp. 114–117 (2007)

    Google Scholar 

  89. Soskova, A.A.: \(\omega \)-degree spectra. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 544–553. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69407-6_58

    Chapter  Google Scholar 

  90. Soskova, A.A., Soskov, I.N.: A jump inversion theorem for the degree spectra. J. Logic Comput. 19, 199–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. Soskova, A., Soskov, I.N.: Quasi-minimal degrees for degree spectra. J. Logic Comput. 23(2), 1319–1334 (2013). doi:10.1093/logcom/ext045

    Article  MathSciNet  MATH  Google Scholar 

  92. Soskova, M., Soskov, I.: Embedding countable partial orderings in the enumeration degrees and the omega enumeration degrees. J. Logic Comput. 22(4), 927–952 (2012). doi:10.1093/logcom/exq051. First published online October 23, 2010

    Article  MathSciNet  MATH  Google Scholar 

  93. Stukachev, A.I.: A jump inversion theorem for semilattices of \(\Sigma \)-degrees. Sib. \(\grave{E}\)lektron. Mat. Izv. 6, 182–190 (2009)

    Google Scholar 

  94. Stukachev, A.I.: A jump inversion theorem for the semilattices of Sigma-degrees. Siberian Adv. Math. 20(1), 68–74 (2010)

    Article  MathSciNet  Google Scholar 

  95. Stukachev, A.I.: Effective model theory: an approach via \(\Sigma \)-definability. In: Greenberg, N., Hamkins, J.D., Hirschfeldt, D., Miller, R. (eds.) Effective Mathematics of the Uncountable. Lecture Notes in Logic, vol. 41, pp. 164–197 (2013)

    Google Scholar 

  96. Vatev, S.: Omega spectra and co-spectra of structures. Master thesis, Sofia University (2008)

    Google Scholar 

  97. Vatev, S.: Conservative extensions of abstract structures. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 300–309. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21875-0_32

    Chapter  Google Scholar 

  98. Vatev, S.: Another jump inversion theorem for structures. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 414–423. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39053-1_49

    Chapter  Google Scholar 

  99. Vatev, S.: Effective properties of structures in the hyperarithmetical hierarchy. Ph.D. thesis, Sofia University (2014)

    Google Scholar 

  100. Vatev, S.: On the notion of jump structure. Ann. Sofia Univ. Fac. Math. Inf. 102, 171–206 (2015)

    MathSciNet  Google Scholar 

  101. Wehner, St.: Enumerations, countable structures and turing degrees. Proc. Am. Math. Soc. 126, 2131–2139 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariya I. Soskova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soskova, A.A., Soskova, M.I. (2017). Enumeration Reducibility and Computable Structure Theory. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics