Abstract
Broadcasting is an information disseminating process of distributing a message from an originator vertex v of graph \(G=(V,E)\) to all of its vertices. The broadcast time of vertex v is the minimum possible time required to broadcast from v in graph G. A graph G on n vertices is called broadcast graph if broadcasting from any originator in G can be accomplished in \(\lceil \log n\rceil \) time. A broadcast graph with the minimum number of edges is called minimum broadcast graph. The number of edges in a minimum broadcast graph on n vertices is denoted by B(n). Finding the values of B(n) is very difficult. A large number of papers present techniques to construct broadcast graphs and to obtain upper bounds on B(n). In this paper, we first find new dimensional broadcast schemes for Knödel graphs, and then use them to give a general upper bound on B(n) for almost all odd n.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Averbuch, A., Shabtai, R.H., Roditty, Y.: Efficient construction of broadcast graphs. Discret. Appl. Math. 171, 9–14 (2014)
Barsky, G., Grigoryan, H., Harutyunyan, H.A.: Tight lower bounds on broadcast function for n = 24 and 25. Discret. Appl. Math. 175, 109–114 (2014)
Bermond, J.-C., Fraigniaud, P., Peters, J.G.: Antepenultimate broadcasting. Networks 26, 125–137 (1995)
Bermond, J.-C., Harutyunyan, H.A., Liestman, A.L., Perennes, S.: A note on the dimensionality of modified Knödel graphs. Int. J. Found. Comput. Sci. 8(02), 109–116 (1997)
Bermond, J.-C., Hell, P., Liestman, A.L., Peters, J.G.: Sparse broadcast graphs. Discret. Appl. Math. 36, 97–130 (1992)
Chau, S.C., Liestman, A.L.: Constructing minimal broadcast networks. J. Comb. Inf. Syst. Sci. 10, 110–122 (1985)
Dinneen, M.J., Fellows, M.R., Faber, V.: Algebraic constructions of efficient broadcast networks. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS, vol. 539, pp. 152–158. Springer, Heidelberg (1991). doi:10.1007/3-540-54522-0_104
Dinneen, M.J., Ventura, J.A., Wilson, M.C., Zakeri, G.: Compound constructions of broadcast networks. Discret. Appl. Math. 93, 205–232 (1999)
Farley, A.M.: Minimal broadcast networks. Networks 9, 313–332 (1979)
Farley, A.M., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Minimum broadcast graphs. Discret. Math. 25, 189–193 (1979)
Fertin, G., Raspaud, A.: A survey on Knödel graphs. Discret. Appl. Math. 137, 173–195 (2004)
Gargano, L., Vaccaro, U.: On the construction of minimal broadcast networks. Networks 19, 673–689 (1989)
Grigni, M., Peleg, D.: Tight bounds on mimimum broadcast networks. SIAM J. Discret. Math. 4, 207–222 (1991)
Grigoryan, H., Harutyunyan, H.A.: New lower bounds on broadcast function. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 174–184. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07956-1_16
Harutyunyan, H.A.: An efficient vertex addition method for broadcast networks. Internet Math. 5(3), 197–211 (2009)
Harutyunyan, H.A., Li, Z.: A new construction of broadcast graphs. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 201–211. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29221-2_17
Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discret. Appl. Math. 98, 81–102 (1999)
Harutyunyan, H.A., Liestman, A.L.: Improved upper and lower bounds for k-broadcasting. Networks 37, 94–101 (2001)
Harutyunyan, H.A., Liestman, A.L.: Upper bounds on the broadcast function using minimum dominating sets. Discret. Math. 312, 2992–2996 (2012)
Harutyunyan, H.A., Liestman, A.L., Peters, J.G., Richards, D.: Broadcasting and gossiping. In: Handbook of Graph Theorey, pp. 1477–1494. Chapman and Hall (2013)
Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18, 319–349 (1988)
Khachatrian, L.H., Harutounian, H.S.: Construction of new classes of minimal broadcast networks. In: Conference on Coding Theory, Dilijan, Armenia, pp. 69–77 (1990)
Knödel, W.: New gossips and telephones. Discret. Math. 13, 95 (1975)
Labahn, R.: A minimum broadcast graph on 63 vertices. Discret. Appl. Math. 53, 247–250 (1994)
Maheo, M., Saclé, J.-F.: Some minimum broadcast graphs. Discret. Appl. Math. 53, 275–285 (1994)
Mitchell, S., Hedetniemi, S.: A census of minimum broadcast graphs. J. Comb. Inf. Syst. Sci. 5, 141–151 (1980)
Park, J.-H., Chwa, K.-Y.: Recursive circulant: a new topology for multicomputer networks. In: International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), pp. 73–80. IEEE (1994)
Saclé, J.-F.: Lower bounds for the size in four families of minimum broadcast graphs. Discret. Math. 150, 359–369 (1996)
Shao, B.: On K-broadcasting in graphs. Ph.D. thesis, Concordia University (2006)
Ventura, J.A., Weng, X.: A new method for constructing minimal broadcast networks. Networks 23, 481–497 (1993)
Weng, M.X., Ventura, J.A.: A doubling procedure for constructing minimal broadcast networks. Telecommun. Syst. 3, 259–293 (1994)
Xiao, J., Wang, X.: A research on minimum broadcast graphs. Chin. J. Comput. 11, 99–105 (1988)
Zhou, J., Zhang, K.: A minimum broadcast graph on 26 vertices. Appl. Math. Lett. 14, 1023–1026 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Harutyunyan, H.A., Li, Z. (2017). Broadcast Graphs Using New Dimensional Broadcast Schemes for Knödel Graphs. In: Gaur, D., Narayanaswamy, N. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2017. Lecture Notes in Computer Science(), vol 10156. Springer, Cham. https://doi.org/10.1007/978-3-319-53007-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-53007-9_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53006-2
Online ISBN: 978-3-319-53007-9
eBook Packages: Computer ScienceComputer Science (R0)