Abstract
In this paper we propose a combination of capabilities of the Field Programmable Gate Arrays based device and PC computer for data processing resulting in classification using previously generated decision rules. Solution is focused on big datasets. Presented architecture has been tested in programmable unit on real datasets. Obtained results confirm the significant acceleration of the computation time using hardware supported operations in comparison to software implementation.
Similar content being viewed by others
References
Grześ, T., Kopczyński, M., Stepaniuk, J.: FPGA in rough set based core and reduct computation. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 263–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41299-8_25
Grzymala-Busse, J.W.: Rule Induction, Data Mining and Knowledge Discovery Handbook, pp. 249-265. Springer, New York (2010)
Kanasugi, A., Yokoyama, A.: A basic design for rough set processor. In: The 15th Annual Conference of Japanese Society for Artificial Intelligence (2001)
Kopczyński, M., Stepaniuk, J.: Rough sets and intelligent systems - professor Zdzisław Pawlak in memoriam, intelligent systems reference library. In: Skowron, A., Suraj, Z. (eds.) Hardware Implementations of Rough Set Methods in Programmable Logic Devices, pp. 309–321. Springer, Heidelberg (2013)
Kopczyński, M., Grześ, T., Stepaniuk, J.: FPGA in rough-granular computing : reduct generation. In: The 2014 IEEE/WCI/ACM International Joint Conferences on Web Intelligence, WI 2014, vol. 2, pp. 364–370. IEEE Computer Society, Warsaw (2014)
Kopczynski, M., Grzes, T., Stepaniuk, J.: Generating core in rough set theory: design and implementation on FPGA. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 209–216. Springer, Cham (2014). doi:10.1007/978-3-319-08729-0_20
Kopczyński, M., Grześ, T., Stepaniuk, J.: Core for large datasets: rough sets on FPGA. Fundam. Inform. 147, 241–259 (2016)
Kopczyński, M., Grześ, T., Stepaniuk, J.: Rough sets based LEM2 rules generation supported by FPGA. Fundam. Inform. 148, 107–121 (2016)
Kopczynski, M., Grzes, T., Stepaniuk, J.: Hardware supported rough sets based rules generation for big datasets. In: Saeed, K., Homenda, W. (eds.) CISIM 2016. LNCS, vol. 9842, pp. 91–102. Springer, Cham (2016). doi:10.1007/978-3-319-45378-1_9
Lewis, T., Perkowski, M., Jozwiak, L.: Learning in hardware: architecture and implementation of an FPGA-based rough set machine. In: 25th EUROMICRO Conference (EUROMICRO 1999), euromicro, vol. 1, p. 1326 (1999)
Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml
Muraszkiewicz, M., Rybinski, H.: Towards a parallel rough sets computer. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 434–443. Springer, London (1994)
Pawlak, Z.: Elementary rough set granules: toward a rough set processor. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neurocomputing: Techniques for Computing with Words, Cognitive Technologies, pp. 5–14. Springer, Berlin (2004)
Snijders, C., Matzat, U., Reips, U.-D.: Big data: big gaps of knowledge in the field of internet science. Int. J. Internet Sci. 7, 1–5 (2012)
Stepaniuk, J.: Knowledge discovery by application of rough set models. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, New Developments in Knowledge Discovery in Information Systems, pp. 137–233. Physica-Verlag, Heidelberg (2000)
Stepaniuk, J.: Rough-Granular Computing in Knowledge Discovery and Data Mining. Springer, Heidelberg (2008)
Stepaniuk, J., Kopczyński, M., Grześ, T.: The first step toward processor for rough set methods. Fundam. Inform. 127, 429–443 (2013)
Acknowledgements
The present study was supported by a grant S/WI/3/2013 from Bialystok University of Technology and founded from the resources for research by Ministry of Science and Higher Education.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kopczynski, M., Grzes, T., Stepaniuk, J. (2017). Hardware Supported Rule-Based Classification on Big Datasets. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10313. Springer, Cham. https://doi.org/10.1007/978-3-319-60837-2_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-60837-2_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60836-5
Online ISBN: 978-3-319-60837-2
eBook Packages: Computer ScienceComputer Science (R0)