Abstract
The paper presents method of nuclei segmentation on cytological images based on the Convolutional Neural Network (CNN) and modified Hough Transform method. It approximates nuclei by ellipses fitted to nuclei regions segmented by CNN. As study data set 50 cytological RGB images were used, divided into training set (50 images) and test set (10 images). The first step is to create a CNN model for pixel-wise classification of cytological images. As training set for CNN, patches of size 28\(\,\times \,\)28 pixels were created based on images from training set and corresponding ground-truth labels. Using trained model, nuclei regions classification and segmentation from test set images was conducted. The reason of choosing the CNN for segmentation it’s better accuracy in separated overlapping nuclei than conventional methods such as for example Otsu thresholding etc. Subsequently, using Canny algorithm and Euclidean Distance Transform (EDT), edges and centers of segmented regions were extracted. Edges and centers of nuclei were extracted for reduce time computation for next step. Finally, finding nuclei using the modified Hough Transform by fitted ellipses was carried out.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986). doi:10.1109/TPAMI.1986.4767851
Dobeš, M., Martinek, J., Skoupil, D., Dobešová, Z., Pospíšil, J.: Human eye localization using the modified hough transform. Optik - Int. J. Light Electron Opt. 117(10), 468–473 (2006), http://dx.doi.org/10.1016/j.ijleo.2005.11.008, http://www.sciencedirect.com/science/article/pii/S0030402606000088
Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972). doi:10.1145/361237.361242, http://doi.acm.org/10.1145/361237.361242
Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D euclidean distance transform algorithms: a comparative survey. ACM Comput. Surv. 40(1), 2:1–2:44 (2008). doi:10.1145/1322432.1322434, http://doi.acm.org/10.1145/1322432.1322434
Filipczuk, P., Kowal, M., Obuchowicz, A.: Automatic breast cancer diagnosis based on K-means clustering and adaptive thresholding hybrid segmentation, pp. 295–302. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23154-4_33, http://dx.doi.org/10.1007/978-3-642-23154-4_33
Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009). doi:10.1109/RBME.2009.2034865
Jarrett, K., Kavukcuoglu, K., Lecun, Y., et al.: What is the best multi-stage architecture for object recognition? In: Proceedings of the 12th IEEE International Conference on Computer Vision, ICCV, Kyoto, Japan, pp. 2146–2153 (2009)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, MM 2014, Orlando, USA, pp. 675–678 (2014). doi:10.1145/2647868.2654889
Kowal, M., Filipczuk, P.: Nuclei segmentation for computer-aided diagnosis of breast cancer. Int. J. Appl. Math. Comput. Sci. 24(1), 19–31 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 26th Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, USA, pp. 1097–1105 (2012)
LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, vol. 2, pp. 396–404. Morgan Kaufmann Publishers Inc., San Francisco (1990)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II–97. IEEE (2004)
Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th International Conference Machine Learning, Montreal, Canada, pp. 609–616 (2009)
Mullainathan, S., Spiess, J., et al.: Machine learning: an applied econometric approach. J. Econ. Perspect. 31(2), 87–106 (2017)
Pinto, N., Doukhan, D., DiCarlo, J., Cox, D.: A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5(11), e1000, 579 (2009)
Smereka, M.: Circular object detection using a modified hough transform. Int. J. Appl. Math. Comp. Sci. 18(1), 85–91 (2008)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, CVPR, Boston, USA, pp. 1–9 (2015)
Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified hough transformation. IEEE Trans. Comput. C-27(8), pp. 777–781 (1978). doi:10.1109/TC.1978.1675191
Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Briggman, M.H.K., Denk, W., Seung, H.S.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22(2), 511–538 (2010)
Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017)
Yip, R.K., Tam, P.K., Leung, D.N.: Modification of hough transform for circles and ellipses detection using a 2-dimensional array. Pattern Recognit. 25(9), 1007–1022 (1992). http://dx.doi.org/10.1016/0031-3203(92)90064-P, http://www.sciencedirect.com/science/article/pii/003132039290064P
Yoel, T.: Machine-learning in optimization of expensive black-box functions. Int. J. Appl. Math. Comp. Sci. 27(1), 105–118 (2017)
Acknowledgments
The research was supported by National Science Centre, Poland (2015/17/B/ST7/03704).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Żejmo, M., Kowal, M., Korbicz, J., Monczak, R. (2018). Nuclei Recognition Using Convolutional Neural Network and Hough Transform. In: Kościelny, J., Syfert, M., Sztyber, A. (eds) Advanced Solutions in Diagnostics and Fault Tolerant Control. DPS 2017. Advances in Intelligent Systems and Computing, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-319-64474-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-64474-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64473-8
Online ISBN: 978-3-319-64474-5
eBook Packages: EngineeringEngineering (R0)