Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nuclei Recognition Using Convolutional Neural Network and Hough Transform

  • Conference paper
  • First Online:
Advanced Solutions in Diagnostics and Fault Tolerant Control (DPS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 635))

Included in the following conference series:

  • 1319 Accesses

Abstract

The paper presents method of nuclei segmentation on cytological images based on the Convolutional Neural Network (CNN) and modified Hough Transform method. It approximates nuclei by ellipses fitted to nuclei regions segmented by CNN. As study data set 50 cytological RGB images were used, divided into training set (50 images) and test set (10 images). The first step is to create a CNN model for pixel-wise classification of cytological images. As training set for CNN, patches of size 28\(\,\times \,\)28 pixels were created based on images from training set and corresponding ground-truth labels. Using trained model, nuclei regions classification and segmentation from test set images was conducted. The reason of choosing the CNN for segmentation it’s better accuracy in separated overlapping nuclei than conventional methods such as for example Otsu thresholding etc. Subsequently, using Canny algorithm and Euclidean Distance Transform (EDT), edges and centers of segmented regions were extracted. Edges and centers of nuclei were extracted for reduce time computation for next step. Finally, finding nuclei using the modified Hough Transform by fitted ellipses was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://imagej.nih.gov/ij/.

  2. 2.

    http://www.nvidia.com/CUDA.

  3. 3.

    http://caffe.berkeleyvision.org/.

  4. 4.

    https://developer.nvidia.com/digits.

  5. 5.

    https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html.

References

  1. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986). doi:10.1109/TPAMI.1986.4767851

  2. Dobeš, M., Martinek, J., Skoupil, D., Dobešová, Z., Pospíšil, J.: Human eye localization using the modified hough transform. Optik - Int. J. Light Electron Opt. 117(10), 468–473 (2006), http://dx.doi.org/10.1016/j.ijleo.2005.11.008, http://www.sciencedirect.com/science/article/pii/S0030402606000088

  3. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972). doi:10.1145/361237.361242, http://doi.acm.org/10.1145/361237.361242

  4. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D euclidean distance transform algorithms: a comparative survey. ACM Comput. Surv. 40(1), 2:1–2:44 (2008). doi:10.1145/1322432.1322434, http://doi.acm.org/10.1145/1322432.1322434

  5. Filipczuk, P., Kowal, M., Obuchowicz, A.: Automatic breast cancer diagnosis based on K-means clustering and adaptive thresholding hybrid segmentation, pp. 295–302. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23154-4_33, http://dx.doi.org/10.1007/978-3-642-23154-4_33

  6. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009). doi:10.1109/RBME.2009.2034865

    Article  Google Scholar 

  7. Jarrett, K., Kavukcuoglu, K., Lecun, Y., et al.: What is the best multi-stage architecture for object recognition? In: Proceedings of the 12th IEEE International Conference on Computer Vision, ICCV, Kyoto, Japan, pp. 2146–2153 (2009)

    Google Scholar 

  8. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, MM 2014, Orlando, USA, pp. 675–678 (2014). doi:10.1145/2647868.2654889

  9. Kowal, M., Filipczuk, P.: Nuclei segmentation for computer-aided diagnosis of breast cancer. Int. J. Appl. Math. Comput. Sci. 24(1), 19–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 26th Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, USA, pp. 1097–1105 (2012)

    Google Scholar 

  11. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, vol. 2, pp. 396–404. Morgan Kaufmann Publishers Inc., San Francisco (1990)

    Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II–97. IEEE (2004)

    Google Scholar 

  14. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th International Conference Machine Learning, Montreal, Canada, pp. 609–616 (2009)

    Google Scholar 

  15. Mullainathan, S., Spiess, J., et al.: Machine learning: an applied econometric approach. J. Econ. Perspect. 31(2), 87–106 (2017)

    Article  Google Scholar 

  16. Pinto, N., Doukhan, D., DiCarlo, J., Cox, D.: A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5(11), e1000, 579 (2009)

    Google Scholar 

  17. Smereka, M.: Circular object detection using a modified hough transform. Int. J. Appl. Math. Comp. Sci. 18(1), 85–91 (2008)

    MathSciNet  Google Scholar 

  18. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, CVPR, Boston, USA, pp. 1–9 (2015)

    Google Scholar 

  19. Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified hough transformation. IEEE Trans. Comput. C-27(8), pp. 777–781 (1978). doi:10.1109/TC.1978.1675191

  20. Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Briggman, M.H.K., Denk, W., Seung, H.S.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22(2), 511–538 (2010)

    Article  MATH  Google Scholar 

  21. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017)

    Article  Google Scholar 

  22. Yip, R.K., Tam, P.K., Leung, D.N.: Modification of hough transform for circles and ellipses detection using a 2-dimensional array. Pattern Recognit. 25(9), 1007–1022 (1992). http://dx.doi.org/10.1016/0031-3203(92)90064-P, http://www.sciencedirect.com/science/article/pii/003132039290064P

  23. Yoel, T.: Machine-learning in optimization of expensive black-box functions. Int. J. Appl. Math. Comp. Sci. 27(1), 105–118 (2017)

    Google Scholar 

Download references

Acknowledgments

The research was supported by National Science Centre, Poland (2015/17/B/ST7/03704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Żejmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Żejmo, M., Kowal, M., Korbicz, J., Monczak, R. (2018). Nuclei Recognition Using Convolutional Neural Network and Hough Transform. In: Kościelny, J., Syfert, M., Sztyber, A. (eds) Advanced Solutions in Diagnostics and Fault Tolerant Control. DPS 2017. Advances in Intelligent Systems and Computing, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-319-64474-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64474-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64473-8

  • Online ISBN: 978-3-319-64474-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics