Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

2D Euclidean distance transform algorithms: A comparative survey

Published: 22 February 2008 Publication History
  • Get Citation Alerts
  • Abstract

    The distance transform (DT) is a general operator forming the basis of many methods in computer vision and geometry, with great potential for practical applications. However, all the optimal algorithms for the computation of the exact Euclidean DT (EDT) were proposed only since the 1990s. In this work, state-of-the-art sequential 2D EDT algorithms are reviewed and compared, in an effort to reach more solid conclusions regarding their differences in speed and their exactness. Six of the best algorithms were fully implemented and compared in practice.

    References

    [1]
    Aho, A. V., Hopcroft, J. E., and Ullman, J. 1982. Data Structures and Algorithms. Addison Wesley.
    [2]
    Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice Hall.
    [3]
    Akmal Butt, M. and Maragos, P. 1998. Optimum design of chamfer distance transforms. IEEE Trans. Image Proc. 7, 10 (October), 1477--1484.
    [4]
    Aurenhammer, F. 1991. Voronoi diagrams---a survey of a fundamental data structure. ACM Comput. Surv. 23, 3, 345--405.
    [5]
    Bellman, R. 1958. On a routing problem. Quaterly Appl. Math. 16, 87--90.
    [6]
    Biere, A. http://www.inf.ethz.ch/personal/biere/projects/ccmalloc. The ccmalloc memory-leak tracing tool.
    [7]
    Blum, H. 1967. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Forms. MIT Press, Cambridge, MA. 362--380.
    [8]
    Borgefors, G. 1984. Distance transformations in arbitrary dimensions. Comput. Vis. Graph. Image Proc. 27, 321--345.
    [9]
    Borgefors, G. 1986. Distance transformations in digital images. Comput. Vis. Graph. Image Proc. 34, 344--371.
    [10]
    Borgefors, G. and Nyström, I. 1997. Efficient shape representation by minimizing the set of centres of maximal discs/spheres. Patt. Recog. Lett. 465--472.
    [11]
    Boxer, L. and Miller, R. 2000. Efficient computation of the Euclidean distance transform. Comput. Vis. Image Under. Notes 80, 379--383.
    [12]
    Breu, H., Gil, J., Kirkpatrick, D., and Werman, M. 1995. Linear time Euclidean distance transform algorithms. IEEE Trans. Patt. Anal. Mach. Intell. 17, 5, 529--533.
    [13]
    Brigham, E. O. 1988. The Fast Fourier Transform and Its Applications. Prentice Hall.
    [14]
    Ceniceros, H. D. and Roma, A. M. 2005. A multi-phase flow method with a fast, geometry-based fluid indicator. J. Computat. Phys. 205, 2 (May), 391--400.
    [15]
    Chen, L. and Chuang, H. Y. H. 1994. A fast algorithm for Euclidean distance maps of a 2D binary image. Inform. Proc. Lett. 51, 25--29.
    [16]
    Chen, M. and Yan, P. 1989. Multiscaling approach based on morphological filtering. IEEE Trans. Patt. Anal. Mach. Intell. 11, 7, 694--700.
    [17]
    Chin, Y., Wang, H., Tay, L. P., and Soh, Y. C. 2001. Vision guided AGV using distance transform. In Proceedings of the 32nd International Symposium on Robotics. 1416--1421.
    [18]
    Coelho, R. and Costa, L. 1996. On the application of the Bouligand-Minkowski fractal dimension for shape characterisation. Appl. Sig. Proc. 3, 163--176.
    [19]
    Coerjolli, D. and Montanvert, A. 2007. Optimal separable algorithm to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. IEEE Trans. Patt. Anal. Mach. Intell. 29, 3 (March), 437--448.
    [20]
    Couprie, M., Saúde, A., and Bertrand, G. 2006. Euclidean homotopic skeleton based on critical kernels. In Proccedings of SIBGRAPI, 19th Brazilian Symposium on Computer Graphics and Image Processing. IEEE Computer Society, 307--314.
    [21]
    Cuisenaire, O. 1999. Distance transformations: Fast algorithms and applications to medical image processing. Ph.D. dissertation, Université Catholique de Louvain, Belgique.
    [22]
    Cuisenaire, O. 2006. Locally adaptable mathematical morphology using distance transformations. Patt. Recog. 39, 3, 405--416.
    [23]
    Cuisenaire, O. and Macq, B. 1999a. Fast and exact signed Euclidean distance transformation with linear complexity. In ICASSP'99---IEEE International Conference on Acoustics, Speech and Signal Processing. Vol. 6. Phoenix, AZ, 3293--3296.
    [24]
    Cuisenaire, O. and Macq, B. 1999b. Fast Euclidean distance transformation by propagation using multiple neighborhoods. Comput. Vis. Image Under. 76, 2, 163--172.
    [25]
    Danielsson, P.-E. 1980. Euclidean distance mapping. Comput. Graph. Image Proc. 14, 227--248.
    [26]
    Dial, R. B. 1969. Shortest path forest with topological ordering. Commun. ACM 12, 632--633.
    [27]
    Dijkstra, E. W. 1959. A note on two problems in connection with graphs. Numerische Math. 1, 269--271.
    [28]
    Eggers, H. 1998. Two fast Euclidean distance transformations in ℤ based on sufficient propagation. Computer Vision and Image Understanding 69, 1 (January), 106--116.
    [29]
    Fabbri, R. http://animal.sourceforge.net. Animal---An Imaging Library.
    [30]
    Fabbri, R. http://siptoolbox.sourceforge.net. SIP---the Scilab Image Processing toolbox.
    [31]
    Fabbri, R. 2004. Design and evaluation of Euclidean distance transform algorithms and applications. M.S. dissertation, USP, São Carlos, Brasil.
    [32]
    Fabbri, R., Bruno, O. M., Torelli, J. C., and da F. Costa, L. 2006. Complete results of the benchmark between exact EDT algorithms. http://distance.sourceforge.net.
    [33]
    Fabbri, R., Estrozi, L., and Costa, L. 2002. On Voronoi diagrams and medial axes. J. Math. Imag. Vis. 17, 1 (July), 27--40.
    [34]
    Falcão, A., Stolfi, J., and Lotufo, R. A. 2004. The image foresting transform: Theory, algorithms, and applications. IEEE Trans. Patt. Anal. Mach. Intell. 26, 1 (January), 19--29.
    [35]
    Felzenszwalb, P. F. and Huttenlocher, D. P. 2004. Distance tansforms of sampled functions. Tech. Rep., Cornell Computing and Information Science.
    [36]
    Felzenszwalb, P. F. and Huttenlocher, D. P. 2006. Efficient belief propagation for early vision. Inter. J. Comput. Vis. 70, 1, 41--54.
    [37]
    Fortune, S. J. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153--174.
    [38]
    Gavrilova, M. L. and Alsuwaiyel, M. H. 2001. Two algorithms for computing the Euclidean distance transform. Int. J. Image Graph. 1, 4, 635--645.
    [39]
    Ge, Y. and Fitzpatrick, J. 1996. On the generation of skeletons from discrete Euclidean distance maps. IEEE Trans. Patt. Anal. Mach. Intell. 18, 11, 1055--1066.
    [40]
    Guan, W. and Ma, S. 1998. A list-processing approach to compute Voronoi diagrams and the Euclidean distance transform. Patt. Anal. Mach. Intell. 20, 7 (July), 757--761.
    [41]
    hao Tseng, Y., neng Hwang, J., and Sheehan, F. H. 1998. 3D heart modeling and motion estimation based on continuous distance transform neural networks and affine transform. J. VLSI Sig. Proc.--Syst. Sig. Image Video Tech. 18, 3 (April).
    [42]
    Hesselink, W. H., Visser, M., and Roerdink, J. B. 2005. Euclidean skeletons of 3D data sets in linear time by the integer medial axis transform. Computational Imaging and Vision, vol. 30. Springer-Verlag, Dordrecht, 259--268.
    [43]
    Hirata, T. 1996. A unified linear-time algorithm for computing distance maps. Inf. Proc. Lett. 58, 3, 129--133.
    [44]
    Huang, C. and Mitchell, O. 1994. A Euclidean distance transform using grayscale morphology decomposition. IEEE Trans. Patt. Anal. Mach. Intell. 16, 4 (April), 443--448.
    [45]
    INRIA.www.scilab.org. Scilab numerical programming environment.
    [46]
    Jain, R. and Binford, T. 1991. Dialogue: Ignorance, myopia, and naiveté in computer vision systems. CVGIP 53, 1, 112--117.
    [47]
    John, F. 1982. Partial Differential Equations, 4th ed. Universitext. Springer-Verlag.
    [48]
    Jolesz, F., Loresen, W., Shinmoto, H., Atsumi, H., Nakajima, S., Kavanaugh, P., Saiviroonporn, P., Seltzer, S., Silverman, S., Phillips, M., and Kikinis, R. 1997. Interactive virtual endoscopy. Amer. J. Radiol. 169, 1229--1237.
    [49]
    Jones, M. W., Baerentzen, J. A., and Sramek, M. 2006. 3D distance fields: A survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12, 4, 581--599.
    [50]
    Kimia, B. B. 2003. On the role of medial geometry in human vision. J. Physiol. 97, 2, 3, 155--190.
    [51]
    Knuth, D. E. 1976. Big Omicron and big Omega and big Theta. Sigact News 8, 2, 18--24.
    [52]
    Kolountzakis, M. N. and Kutulakos, K. N. 1992. Fast computation of the Euclidean distance maps for binary images. Inf. Proc. Lett. 43, 4, 181--184.
    [53]
    Kovács, I. and Julesz, B. 1994. Perceptual sensitivity maps within globally defined visual shapes. Nature 370, 6491, 644--646.
    [54]
    Kozinska, D., Tretiak, O. J., Nissanov, J., and Ozturk, C. 1997. Multidimensional alignment using the Euclidean distance transform. Graph. Models Image Proc. 59, 6 (November), 373--496.
    [55]
    Leymarie, F. and Levine, M. D. 1992. Fast raster scan distance propagation on the discrete rectangular lattice. Comput. Vis. Image Under. 55, 1 (January).
    [56]
    Leyton, M. 1992. Symmetry, Causality, Mind. MIT Press.
    [57]
    Liu, H. and Srinath, M. 1990. Partial shape classification using contour matching in distance transformation. IEEE Trans. Patt. Anal. Mach. Intell. 12, 11, 1072--1079.
    [58]
    Lotufo, R. and Zampirolli, F. 2001. Fast multi-dimensional parallel Euclidean distance transform based on mathematical morphology. In Proccedings of SIBGRAPI, XIV Brazilian Symposium on Computer Graphics and Image Processing. IEEE Computer Society, 100--105.
    [59]
    Lotufo, R. A. and Zampirolli, F. A. 2003. Multidimensional parallel EDT using 1D erosions by propagation. IEEE Trans. Image Proc. To appear.
    [60]
    Lucet, Y. 2007. New sequential exact Euclidean distance transform algorithms based on convex analysis. Image Vis. Comput. To appear.
    [61]
    Maurer, C., Qi, R., and Raghavan, V. 2003. A linear time algorithm for computing the Euclidean distance transform in arbitrary dimensions. IEEE Trans. Patt. Anal. Mach. Intell. 25, 2 (February), 265--270.
    [62]
    Meijster, A., Roerdink, J., and Hesselink, W. 2000. A general algorithm for computing distance transforms in linear time. In Proceedings of the 5th International Conference on Mathematical Morphology and its Applications to Image and Signal Processing.
    [63]
    Montanari, U. 1968. A method for obtaining skeletons using a quasi-Euclidean distance. J. ACM 15, 4, 600--624.
    [64]
    Moore, E. F. 1959. The shortest path through a maze. In Proceedings of the International Symposium on Switching Theory., Part II. Harvard University Press, Cambridge, MA, 285--292.
    [65]
    Mullikin, J. 1992. The vector distance transform in two and three dimensions. Graph. Mod. Image Proc. 54, 6, 526--535.
    [66]
    Ogniewicz, R. L. and Kübler, O. 1995. Voronoi tessellation of points with integer coordinates: Time-efficient implementation and online edge-list generation. Patt. Recog. 28, 12, 1839--1844.
    [67]
    Osher, S. and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed. J. Comput. Phys. 79, 1, 12--49.
    [68]
    Paglieroni, D. W. 1992a. Distance transforms: Properties and machine vision applications. Graph. Mod. Image Proc. 54, 1, 56--74.
    [69]
    Paglieroni, D. W. 1992b. A unified distance transform algorithm and architecture. Mach. Vision Appl. 5, 1, 47--55.
    [70]
    Paglieroni, D. W. 1997. Directional distance transforms and height field preprocessing for efficient ray tracing. Graph. Mod. Image Proc. 59, 4 (July), 253--264.
    [71]
    Parker, R. 1997. Algorithms for Image Processing and Computer Vision. Wiley.
    [72]
    Piper, J. and Granum, E. 1987. Computing distance transforms in convex and non-convex domains. Patt. Recog. 20, 6, 599--615.
    [73]
    Preparata, F. and Shamos, M. 1990. Computational Geometry. Springer-Verlag.
    [74]
    Ragnemalm, I. 1992. Neighborhoods for distance transformations using ordered propagation. CVGIP---Image Understanding 56, 3, 399--409.
    [75]
    Ragnemalm, I. 1993. The Euclidean distance transformation in arbitrary dimensions. Patt. Reocg. Lett. 14, 883--888.
    [76]
    Rosenfeld, A. and Kak, A. C. 1976. Digital Picture Processing. Academic Press.
    [77]
    Rosenfeld, A. and Pfaltz, J. 1966. Sequential operations in digital picture processing. J. ACM 13, 4.
    [78]
    Rosenfeld, A. and Pfaltz, J. 1968. Distance functions on digital pictures. Patt. Recog. 1, 1, 33--61.
    [79]
    Saito, T. and Toriwaki, J. 1994. New algorithms for Euclidean distance transformations of an n-dimensional digitised picture with applications. Patt. Recog. 27, 11, 1551--1565.
    [80]
    Saúde, A. V., Couprie, M., and Lotufo, R. A. 2006. Exact Euclidean medial axis in higher resolution. In Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science. Springer, 605--616.
    [81]
    Sebastian, T., Crisco, J., and Kimia, B. 2003. Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med. Image Anal. 7, 1 (March), 21--45.
    [82]
    Serra, J. 1982. Image Analysis and Mathematical Morphology. Vol. 1. Academic Press.
    [83]
    Sethian, J. 1999. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry. Cambridge University Press.
    [84]
    Seward, J. http://valgrind.kde.org. Valgrind: a GPL'd system for debugging and profiling x86-Linux programs.
    [85]
    Sharaiha, Y. and Christofides, N. 1994. A graph-theoretic approach to distance transformations. Patt. Recog. Lett. 15, 1035--1041.
    [86]
    Shih, F. Y. and Liu, J. 1998. Size-invariant four-scan Euclidean distance transformation. Patt. Recog. 31, 11, 1761--1766.
    [87]
    Shih, F. Y. and Wu, Y.-T. 2004a. The efficient algorithms for achieving Euclidean distance transformation. IEEE Trans. Image Proc. 13, 3, 1078--1091.
    [88]
    Shih, F. Y. and Wu, Y.-T. 2004b. Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood. Comput. Vis. Image Under. 93, 2 (February), 195--205.
    [89]
    Shih, F. Y. and Wu, Y.-T. 2004c. Three-dimensional Euclidean distance transformation and its application to shortest path planning. Patt. Recog. 37, 1, 79--92.
    [90]
    Shih, F. Y. C. and Mitchell, O. R. 1992. A mathematical morphology approach to Euclidean distance transformation. IEEE Trans. Image Proc. 1, 2, 197--204.
    [91]
    Siddiqi, K., Kimia, B. B., and Shu, C. 1997. Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution. Graph. Mod. Image Proc. 59, 5 (September), 278--301.
    [92]
    Soille, P. and Vincent, L. 1991. Watersheds in digital spaces: An efficient algorithm based on imersion simmulations. IEEE Trans. Patt. Anal. Mach. Intell. 13, 6, 583--598.
    [93]
    Sramek, M. and Kaufman, A. 2000. Fast ray-tracing of rectilinear volume data using distance transforms. IEEE Trans. Vis. Comput. Graph. 06, 3, 236--252.
    [94]
    Starovoitov, V. 1996. A clustering technique based on the distance transform. Patt. Recog. Lett. 17, 3, 231--239.
    [95]
    Tek, H. and Kimia, B. B. 2003. Symmetry maps of free-form curve segments via wave propagation. Inter. J. Comput. Vis. 54, 3 (August), 35--81.
    [96]
    Thiran, J. and Macq, B. 1996. Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Trans. Biomed. Eng. 43, 1011--1019.
    [97]
    Travençolo, B. A. N., Martínez Debat, C., Beletti, M. E., Sotelo Silveira, J., Ehrlich, R., and Costa, L. D. F. 2007. A new method for quantifying three-dimensional interactions between biological structures. J. Anat. 210, 221--231.
    [98]
    Travis, A. J., Hirst, D. J., and Chesson, A. 1996. Automatic classification of plant cells according to tissue type using anatomical features obtained by the distance transform. Ann. Bot. 78, 325--331.
    [99]
    Verwer, B., Verbeek, P., and Dekker, S. 1989. An efficient uniform cost algorithm applied to distance transforms. IEEE Trans. Patt. Anal. Mach. Intell. 11, 4 (April), 425--429.
    [100]
    Vincent, L. 1991. Exact Euclidean distance function by chain propagations. In Proceedings of the Conference on IEEE Computer Vision and Pattern Recognition. 520--525.
    [101]
    Wintermark, M., Reichhart, M., Cuisenaire, O., Maeder, P., Thiran, J., Schnyder, P., Bogousslavsky, J., and Meuli, R. 2002. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 8, 33 (August), 2025--2031.
    [102]
    Xia, R., Liu, W., Wang, Y., and Wu, X. 2004. Fast initialization of level set method and an improvement to Chan-Vese model. In Proceedings of the International Conference on Computer and Information Technology. 18--23.
    [103]
    Yamada, H. 1984. Complete Euclidean distance transformation by parallel operation. In Proceedings of the 7th International Conference on Pattern Recognition. Vol. 1. 69--71.
    [104]
    You, J., Pissaloux, E., Zhu, W. P., and Cohen, H. A. 1995. Efficient image matching: A hierarchical chamfer matching scheme via distributed system. Real-time Imaging 1, 4 (October), 245--259.
    [105]
    Zampirolli, F. A. 2003. Transformada de distância por morfologia matemática. Ph.D. dissertation, UNICAMP, Campinas, Brasil.
    [106]
    Zampirolli, F. A. and Lotufo, R. A. 2000. Classification of the distance transformation algorithms under the mathematical morphology approach. In Proccedings of SIBGRAPI, XIII Brazilian Symposium on Computer Graphics and Image Processing. Gramado, RS, Brasil.
    [107]
    Zeng, P. and Hirata, T. 2003. Distance map based enhancement for interpolated images. In Geometry, Morphology and Computational Imaging. Lecture Notes in Computer Science, vol. 2616. Springer-Verlag, 86--100.

    Cited By

    View all
    • (2024)Unsupervised Color-Based Flood Segmentation in UAV ImageryRemote Sensing10.3390/rs1612212616:12(2126)Online publication date: 12-Jun-2024
    • (2024)AnimalEnvNet: A Deep Reinforcement Learning Method for Constructing Animal Agents Using Multimodal Data FusionApplied Sciences10.3390/app1414638214:14(6382)Online publication date: 22-Jul-2024
    • (2024)An improvement in block matching algorithms using a dissimilarity measure in frequency domain transformJournal of Intelligent & Fuzzy Systems10.3233/JIFS-219341(1-11)Online publication date: 6-May-2024
    • Show More Cited By

    Index Terms

    1. 2D Euclidean distance transform algorithms: A comparative survey

                                  Recommendations

                                  Comments

                                  Information & Contributors

                                  Information

                                  Published In

                                  cover image ACM Computing Surveys
                                  ACM Computing Surveys  Volume 40, Issue 1
                                  February 2008
                                  172 pages
                                  ISSN:0360-0300
                                  EISSN:1557-7341
                                  DOI:10.1145/1322432
                                  Issue’s Table of Contents
                                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                                  Publisher

                                  Association for Computing Machinery

                                  New York, NY, United States

                                  Publication History

                                  Published: 22 February 2008
                                  Accepted: 01 May 2007
                                  Revised: 01 December 2006
                                  Received: 01 July 2006
                                  Published in CSUR Volume 40, Issue 1

                                  Permissions

                                  Request permissions for this article.

                                  Check for updates

                                  Author Tags

                                  1. Dijkstra's algorithm
                                  2. Distance transform
                                  3. computational geometry
                                  4. exact Euclidean distance map
                                  5. performance evaluation
                                  6. shape analysis

                                  Qualifiers

                                  • Research-article
                                  • Research
                                  • Pre-selected

                                  Funding Sources

                                  Contributors

                                  Other Metrics

                                  Bibliometrics & Citations

                                  Bibliometrics

                                  Article Metrics

                                  • Downloads (Last 12 months)171
                                  • Downloads (Last 6 weeks)20
                                  Reflects downloads up to

                                  Other Metrics

                                  Citations

                                  Cited By

                                  View all
                                  • (2024)Unsupervised Color-Based Flood Segmentation in UAV ImageryRemote Sensing10.3390/rs1612212616:12(2126)Online publication date: 12-Jun-2024
                                  • (2024)AnimalEnvNet: A Deep Reinforcement Learning Method for Constructing Animal Agents Using Multimodal Data FusionApplied Sciences10.3390/app1414638214:14(6382)Online publication date: 22-Jul-2024
                                  • (2024)An improvement in block matching algorithms using a dissimilarity measure in frequency domain transformJournal of Intelligent & Fuzzy Systems10.3233/JIFS-219341(1-11)Online publication date: 6-May-2024
                                  • (2024)Keratin 17 modulates the immune topography of pancreatic cancerJournal of Translational Medicine10.1186/s12967-024-05252-122:1Online publication date: 10-May-2024
                                  • (2024)Multi-source deep domain adaptation ensemble framework for cross-dataset motor imagery EEG transfer learningPhysiological Measurement10.1088/1361-6579/ad4e95Online publication date: 21-May-2024
                                  • (2024)Weighted Intersection over Union (wIoU) for evaluating image segmentationPattern Recognition Letters10.1016/j.patrec.2024.07.011185(101-107)Online publication date: Sep-2024
                                  • (2024)An indeterminacy fusion of encoder-decoder network based on neutrosophic set for white blood cells segmentationExpert Systems with Applications10.1016/j.eswa.2024.123156246(123156)Online publication date: Jul-2024
                                  • (2024)Accurate detection of surface defects by decomposing unreliable tasks under boundary guidanceExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122977244:COnline publication date: 15-Jun-2024
                                  • (2024)Evaluation of Cellpose segmentation with sequential thresholding for instance segmentation of cytoplasms within autofluorescence imagesComputers in Biology and Medicine10.1016/j.compbiomed.2024.108846179(108846)Online publication date: Sep-2024
                                  • (2024)A novel optimization approach for bio-design of therapeutic compression stockings with pressure fitComputers in Biology and Medicine10.1016/j.compbiomed.2023.107768168(107768)Online publication date: Jan-2024
                                  • Show More Cited By

                                  View Options

                                  Get Access

                                  Login options

                                  Full Access

                                  View options

                                  PDF

                                  View or Download as a PDF file.

                                  PDF

                                  eReader

                                  View online with eReader.

                                  eReader

                                  Media

                                  Figures

                                  Other

                                  Tables

                                  Share

                                  Share

                                  Share this Publication link

                                  Share on social media