Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Growing a Random Forest with Fuzzy Spatial Features for Fully Automatic Artery-Specific Coronary Calcium Scoring

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

The amount of coronary artery calcium (CAC) is a strong and independent predictor of coronary heart disease (CHD). The standard routine for CAC quantification is to perform non-contrasted coronary computed-tomography (CCT) on a patient and present the resulting image to an expert, who then uses this to label CAC in a tedious and time-consuming process. To improve this situation, we present an automatic CAC labeling system with high clinical practicability. In contrast to many other automatic calcium scoring systems, it does not require additional cardiac computed tomography angiography (CCTA) data for artery-specific labeling. Instead, an atlas-based feature approach in combination with a random forest (RF) classifier is used to incorporate fuzzy spatial knowledge from offline data. Overall detection of CAC volume on a test set with 40 patients yields an \(F_1\) score of 0.95 and 1.00 accuracy for risk class assignment. The intraclass correlation coefficient is 0.98 for the left anterior descending artery (LAD), 0.88 for the left circumflex artery (LCX), and 0.98 for the right coronary artery (RCA). The implemented system offers state-of-the-art accuracy with a processing time (< 30 s) by magnitudes lower than comparable systems to be found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, A., Leber, A., Becker, C., Knez, A.: Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am. Heart J. 155(1), 154–160 (2008)

    Article  Google Scholar 

  2. Danielsson, P.E.: Euclidean distance mapping. Comput. Graph. Image Process. 14(3), 227–248 (1980)

    Article  Google Scholar 

  3. Go, A.S., et al.: Executive summary: heart disease and stroke statistics-2014 update. Circulation 129(3), 399–410 (2014)

    Article  Google Scholar 

  4. Shahzad, R., van Walsum, T., Schaap, M., Rossi, A., Klein, S., Weustink, A.C., de Feyter, P.J., van Vliet, L.J., Niessen, W.J.: Vessel specific coronary artery calcium scoring: an automatic system. Acad. Radiol. 20(1), 1–9 (2013)

    Article  Google Scholar 

  5. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 589–596. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_72

    Chapter  Google Scholar 

  6. Wolterink, J.M., Leiner, T., de Vos, B.D., Coatrieux, J.L., Kelm, B.M., Kondo, S., Salgado, R.A., Shahzad, R., Shu, H., Snoeren, M., Takx, R.A.P., van Vliet, L.J., van Walsum, T., Willems, T.P., Yang, G., Zheng, Y., Viergever, M.A., Isgum, I.: An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the OrCaScore framework. Med. Phys. 43(5), 2361–2373 (2016)

    Article  Google Scholar 

  7. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  8. Zheng, Y., et al.: Automatic aorta segmentation and valve landmark detection in C-arm CT: application to aortic valve implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 476–483. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15705-9_58

    Chapter  Google Scholar 

  9. Zheng, Y., Tek, H., Funka-Lea, G.: Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 74–81. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_10

    Chapter  Google Scholar 

  10. Zhong, H., Zheng, Y., Funka-Lea, G., Vega-Higuera, F.: Automatic heart isolation in 3D CT images. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 165–180. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36620-8_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Durlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Durlak, F., Wels, M., Schwemmer, C., Sühling, M., Steidl, S., Maier, A. (2017). Growing a Random Forest with Fuzzy Spatial Features for Fully Automatic Artery-Specific Coronary Calcium Scoring. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics