Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

First-Order Typed Model Counting for Probabilistic Conditional Reasoning at Maximum Entropy

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10564))

Included in the following conference series:

Abstract

First-order typed model counting extends first-order model counting by the ability to distinguish between different types of models. In this paper, we exploit this benefit in order to calculate weighted conditional impacts (WCIs) which play a central role in nonmonotonic reasoning based on conditionals. More precisely, WCIs store information about the verification and the falsification of conditionals with respect to a possible worlds semantics, and therefore serve as sufficient statistics for maximum entropy (ME) distributions as models of probabilistic conditional knowledge bases. Formally, we annotate formulas with algebraic types that encode concisely all structural information needed to compute WCIs, while allowing for a systematic and efficient counting of models. In this way, our approach to typed model counting for ME-reasoning integrates both structural and counting aspects in the same framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Non-conditional statements of the form “\(A\in \mathsf {FOL}\) holds with probability p” can be accommodated into \(\mathcal {R}\) by adding the conditional \((A|\top )[p]\) to \(\mathcal {R}\).

  2. 2.

    We usually omit the operation symbol “\(\cdot \)”.

  3. 3.

    The operation \(\circ \) shall be the one that binds weakest.

  4. 4.

    We write edge labels in dashed frames and omit the label “\(\mathbf {1_\mathcal {S}}\)”.

  5. 5.

    Note that \(\mathsf {sd}\text {-}\mathsf {DNNF}^{\mathcal {S}}\)-circuits principally represent grounded formulas, and so are \(A,B,C\in \mathsf {FOL}^\mathcal {S}\) in the following definitions. The power of \(\mathsf {sd}\text {-}\mathsf {DNNF}^{\mathcal {S}}\)-circuits lies in the capability of consolidating isomorphic formulas via set conjunction respectively set disjunction.

  6. 6.

    In \(\mathsf {TMC}(A)\) resp. \(\mathsf {TMC}(B)\), those structured interpretations are considered that are restricted to the ground atoms in A resp. B.

  7. 7.

    Here, \(\forall _{X\in \mathsf {var}(r_i)} X.\phi _i(r_i)=\forall X_1. (\ldots \forall X_m.\phi _i(r_i))\) where \(\mathsf {var}(r_i)=\{X_1,\ldots ,X_m\}\). Note that \(\mathsf {var}(r_i)=\mathsf {var}(\phi _i(r_i))\) for \(i=1,\ldots ,n\), which can be proved easily.

References

  1. Van den Broeck, G.: Lifted inference and learning in statistical relational models. Ph.D. thesis, KU Leuven (2013)

    Google Scholar 

  2. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: Proceedings of 22nd IJCAI Conference, IJCAI/AAAI, pp. 2178–2185 (2011)

    Google Scholar 

  3. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Stat. 43, 1470–1480 (1972). Institute of Mathematical Statistics

    Article  MathSciNet  MATH  Google Scholar 

  4. Finthammer, M., Beierle, C.: A two-level approach to maximum entropy model computation for relational probabilistic logic based on weighted conditional impacts. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 162–175. Springer, Cham (2014). doi:10.1007/978-3-319-11508-5_14

    Google Scholar 

  5. Finthammer, M., Beierle, C.: Towards a more efficient computation of weighted conditional impacts for relational probabilistic knowledge bases under maximum entropy semantics. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS, vol. 9324, pp. 72–86. Springer, Cham (2015). doi:10.1007/978-3-319-24489-1_6

    Chapter  Google Scholar 

  6. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  7. Kern-Isberner, G.: A note on conditional logics and entropy. Int. J. Approx. Reason. 19(3–4), 231–246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  9. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artif. Intell. 157(1–2), 139–202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic conditionals. In: Proceedings of 12th KR Conference. AAAI Press (2010)

    Google Scholar 

  11. Kimmig, A., Van den Broeck, G., de Raedt, L.: Algebraic model counting. Int. J. Appl. Logic 22(C), 46–62 (2017)

    Article  MathSciNet  Google Scholar 

  12. Paris, J.B.: The Uncertain Reasoner’s Companion - A Mathematical Perspective. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  13. Paris, J.B.: Common sense and maximum entropy. Synthese 117(1), 75–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Poole, D.: First-order probabilistic inference. In: Proceedings of 18th IJCAI Conference, pp. 985–991. Morgan Kaufmann (2003)

    Google Scholar 

  15. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  16. Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theor. 26(1), 26–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wilhelm, M., Kern-Isberner, G.: Typed model counting and its application to probabilistic conditional reasoning at maximum entropy. In: Proceedings of 30th FLAIRS Conference, pp. 748–753. AAAI Press (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the German National Science Foundation (DFG) Research Unit FOR 1513 on Hybrid Reasoning for Intelligent Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wilhelm, M., Finthammer, M., Kern-Isberner, G., Beierle, C. (2017). First-Order Typed Model Counting for Probabilistic Conditional Reasoning at Maximum Entropy. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics