Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Global Localization for Future Space Exploration Rovers

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2017)

Abstract

In the context of robotic space exploration the problem of autonomous global or absolute localization remains unsolved. Current rovers require human in the loop approaches to acquire global positioning. In this paper we assess this problem by refining our previous work in a way that advances the performance of the system while making the procedure feasible for real implementation on rovers. A map of semantic landmarks (the Global Network - GN) is extracted on an area that the rover traverses prior to the mission and, during the exploration, a Local Network (LN) is built and matched to estimate rover’s global location. We have optimized several aspects of the system: the motion estimation, the detection and classification –by benchmarking several classifiers– and we have tested the system in a Mars like scenario. With the aim to achieve realistic terms in our scenario a custom robotic platform was developed, bearing operation features similar to ESA’s ExoMars. Our results indicate that the proposed system is able to perform global localization and converges relatively fast to an accurate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattingly, R., May, L.: Mars sample return as a campaign. In: 2011 IEEE Aerospace Conference, pp. 1–13. IEEE (2011)

    Google Scholar 

  2. Mishkin, A.H., Morrison, J.C., Nguyen, T.T., Stone, H.W., Cooper, B.K., Wilcox, B.H.: Experiences with operations and autonomy of the mars pathfinder microrover. In: 1998 IEEE Aerospace Conference, vol. 2, pp. 337–351. IEEE (1998)

    Google Scholar 

  3. Maimone, M.: Curiouser and curiouser: surface robotic technology driving mars rover curiositys exploration of gale crater. In: 2013 IEEE International Conference on Robotics and Automation Workshop: on Planetary Rovers (ICRA Workshop). IEEE (2013)

    Google Scholar 

  4. Baglioni, P., Joudrier, L.: Exomars rover mission overview. In: 2013 IEEE International Conference on Robotics and Automation Workshop: on Planetary Rovers (ICRA Workshop). IEEE (2013)

    Google Scholar 

  5. Boukas, E., Gasteratos, A., Visentin, G.: Towards orbital based global rover localization. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2874–2881, May 2015

    Google Scholar 

  6. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)

    Article  Google Scholar 

  7. Scaramuzza, D., Fraundorfer, F.: Visual odometry: Part I: the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  8. Kostavelis, I., Nalpantidis, L., Boukas, E., Rodrigalvarez, M.A., Stamoulias, I., Lentaris, G., Diamantopoulos, D., Siozios, K., Soudris, D., Gasteratos, A.: Spartan: developing a vision system for future autonomous space exploration robots. J. Field Robot. 31(1), 107–140 (2014)

    Article  Google Scholar 

  9. Lourakis, M.I., Argyros, A.A.: SBA: a software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. (TOMS) 36(1), 2 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lakemond, R., Sridharan, S., Fookes, C.: Hessian-based affine adaptation of salient local image features. J. Math. Imaging Vis. 44(2), 150–167 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shapira, L., Oicherman, B.: Black is green: adaptive color transformation for reduced ink usage. In: Computer Graphics Forum, vol. 31, pp. 365–372. Wiley Online Library (2012)

    Google Scholar 

  12. Chen, C.S., Hung, Y.P., Cheng, J.B.: Ransac-based darces: a new approach to fast automatic registration of partially overlapping range images. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1229–1234 (1999)

    Article  Google Scholar 

  13. Carle, P.J., Barfoot, T.D.: Global rover localization by matching Lidar and orbital 3D maps. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 881–886. IEEE (2010)

    Google Scholar 

  14. Boukas, E., Gasteratos, A., Visentin, G.: Localization of planetary exploration rovers with orbital imaging: a survey of approache. In: 2014 IEEE International Conference on Workshop on Modelling, Estimation, Perception and Control of All Terrain Mobile Robots (ICRA Workshop). IEEE (2014)

    Google Scholar 

  15. Woods, M., Shaw, A., Tidey, E., Van Pham, B., Artan, U., Maddison, B., Cross, G.: Seeker-autonomous long range rover navigation for remote exploration. In: International Symposiumon Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS) (2012)

    Google Scholar 

  16. Golombek, M., Huertas, A., Kipp, D., Calef, F.: Detection and characterization of rocks and rock size-frequency distributions at the final four mars science laboratory landing sites. Int. J. Mars Sci. Explor. 7, 1–22 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazaros Nalpantidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Boukas, E., Polydoros, A.S., Visentin, G., Nalpantidis, L., Gasteratos, A. (2017). Global Localization for Future Space Exploration Rovers. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68345-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68344-7

  • Online ISBN: 978-3-319-68345-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics