Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The IRMUDOSA System at ESWC-2017 Challenge on Semantic Sentiment Analysis

  • Conference paper
  • First Online:
Semantic Web Challenges (SemWebEval 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 769))

Included in the following conference series:

Abstract

Multi-Domain opinion mining consists in estimating the polarity of a document by exploiting domain-specific information. One of the main issue of the approaches discussed in literature is their poor capability of being applied on domains that have not been used for building the opinion model. In this paper, we present an approach exploiting the linguistic overlap between domains for building models enabling the estimation of polarities for documents belonging to any other domain. The system implementing such an approach has been presented at the third edition of the Semantic Sentiment Analysis Challenge co-located with ESWC 2017. Fuzzy representation of features polarity supports the modeling of information uncertainty learned from training set and integrated with knowledge extracted from two well-known resources used in the opinion mining field, namely Sentic.Net and the General Inquirer. The proposed technique has been validated on a multi-domain dataset and the results demonstrated the effectiveness of the proposed approach by setting a plausible starting point for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://sentic.net/.

  2. 2.

    http://commons.media.mit.edu/en/.

  3. 3.

    http://www.wjh.harvard.edu/~inquirer/spreadsheet_guide.htm.

  4. 4.

    All the material used for the evaluation and the built models are available at http://goo.gl/pj0nWS.

References

  1. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP, Philadelphia, pp. 79–86. Association for Computational Linguistics, July 2002

    Google Scholar 

  2. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp. 187–205 (2007)

    Google Scholar 

  3. Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: WWW, pp. 751–760 (2010)

    Google Scholar 

  4. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 415–463. Springer, Boston (2012). doi:10.1007/978-1-4614-3223-4_13

    Chapter  Google Scholar 

  5. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL, pp. 271–278 (2004)

    Google Scholar 

  6. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW, pp. 519–528 (2003)

    Google Scholar 

  7. Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for sentiment analysis. In: ACL, pp. 1386–1395 (2010)

    Google Scholar 

  8. Tan, S., Wang, Y., Cheng, X.: Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples. In: SIGIR, pp. 743–744 (2008)

    Google Scholar 

  9. Qiu, L., Zhang, W., Hu, C., Zhao, K.: SELC: a self-supervised model for sentiment classification. In: CIKM, pp. 929–936 (2009)

    Google Scholar 

  10. Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combining lexical knowledge with text classification. In: KDD, pp. 1275–1284 (2009)

    Google Scholar 

  11. Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

  12. Somasundaran, S.: Discourse-level relations for Opinion Analysis. Ph.D. thesis, University of Pittsburgh (2010)

    Google Scholar 

  13. Wang, H., Zhou, G.: Topic-driven multi-document summarization. In: IALP, pp. 195–198 (2010)

    Google Scholar 

  14. Dragoni, M.: SHELLFBK: an information retrieval-based system for multi-domain sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, pp. 502–509. Association for Computational Linguistics, June 2015

    Google Scholar 

  15. Petrucci, G., Dragoni, M.: An information retrieval-based system for multi-domain sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 234–243. Springer, Cham (2015). doi:10.1007/978-3-319-25518-7_20

    Chapter  Google Scholar 

  16. Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Exploiting propositions for opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 121–125. Springer, Cham (2016). doi:10.1007/978-3-319-46565-4_9

    Chapter  Google Scholar 

  17. Federici, M., Dragoni, M.: A knowledge-based approach for aspect-based opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 141–152. Springer, Cham (2016). doi:10.1007/978-3-319-46565-4_11

    Chapter  Google Scholar 

  18. Dragoni, M., Tettamanzi, A.G., da Costa Pereira, C.: Propagating and aggregating fuzzy polarities for concept-level sentiment analysis. Cogn. Comput. 7(2), 186–197 (2015)

    Article  Google Scholar 

  19. Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Cham (2014). doi:10.1007/978-3-319-12024-9_2

    Google Scholar 

  20. Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC-2016 challenge on semantic sentiment analysis. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 126–140. Springer, Cham (2016). doi:10.1007/978-3-319-46565-4_10

    Chapter  Google Scholar 

  21. da Costa Pereira, C., Dragoni, M., Pasi, G.: A prioritized “And” aggregation operator for multidimensional relevance assessment. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 72–81. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10291-2_8

    Chapter  Google Scholar 

  22. Federici, M., Dragoni, M.: Towards unsupervised approaches for aspects extraction. In: Dragoni, M., Recupero, D.R., Denecke, K., Deng, Y., Declerck, T. (eds.) Joint Proceedings of the 2nd Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web and the 1st International Workshop on Extraction and Processing of Rich Semantics from Medical Texts Co-located with ESWC 2016, Heraklion, 29 May 2016. CEUR Workshop Proceedings, vol. 1613. CEUR-WS.org (2016)

    Google Scholar 

  23. Federici, M., Dragoni, M.: A branching strategy for unsupervised aspect-based sentiment analysis. In: Dragoni, M., Recupero, D.R. (eds.) Proceedings of the 3rd International Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web Co-located with 14th ESWC 2017, Portroz, 28 May 2017. CEUR Workshop Proceedings, vol. 1874. CEUR-WS.org (2017)

    Google Scholar 

  24. Riloff, E., Patwardhan, S., Wiebe, J.: Feature subsumption for opinion analysis. In: EMNLP, pp. 440–448 (2006)

    Google Scholar 

  25. Wilson, T., Wiebe, J., Hwa, R.: Recognizing strong and weak opinion clauses. Comput. Intell. 22(2), 73–99 (2006)

    Article  MathSciNet  Google Scholar 

  26. Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Cham (2015). doi:10.1007/978-3-319-25518-7_22

    Chapter  Google Scholar 

  27. Hatzivassiloglou, V., Wiebe, J.: Effects of adjective orientation and gradability on sentence subjectivity. In: COLING, pp. 299–305 (2000)

    Google Scholar 

  28. Kim, S.M., Hovy, E.H.: Crystal: analyzing predictive opinions on the web. In: EMNLP-CoNLL, pp. 1056–1064 (2007)

    Google Scholar 

  29. Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Polarity classification for target phrases in tweets: a Word2Vec approach. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 217–223. Springer, Cham (2016). doi:10.1007/978-3-319-47602-5_40

    Chapter  Google Scholar 

  30. Rexha, A., Kröll, M., Kern, R., Dragoni, M.: An embedding approach for microblog polarity classification. In: Dragoni, M., Recupero, D.R. (eds.) Proceedings of the 3rd International Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web Co-located with 14th ESWC 2017, Portroz, 28 May 2017. CEUR Workshop Proceedings, vol. 1874. CEUR-WS.org (2017)

    Google Scholar 

  31. Dragoni, M., Reforgiato Recupero, D.: Challenge on fine-grained sentiment analysis within ESWC2016. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 79–94. Springer, Cham (2016). doi:10.1007/978-3-319-46565-4_6

    Chapter  Google Scholar 

  32. Jakob, N., Gurevych, I.: Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: EMNLP, pp. 1035–1045 (2010)

    Google Scholar 

  33. Jin, W., Ho, H.H., Srihari, R.K.: Opinionminer: a novel machine learning system for web opinion mining and extraction. In: KDD, pp. 1195–1204 (2009)

    Google Scholar 

  34. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW, pp. 342–351 (2005)

    Google Scholar 

  35. Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase dependency parsing for opinion mining. In: EMNLP, pp. 1533–1541 (2009)

    Google Scholar 

  36. Su, Q., Xu, X., Guo, H., Guo, Z., Wu, X., Zhang, X., Swen, B., Su, Z.: Hidden sentiment association in Chinese web opinion mining. In: WWW, pp. 959–968 (2008)

    Google Scholar 

  37. Dragoni, M., Azzini, A., Tettamanzi, A.G.B.: A novel similarity-based crossover for artificial neural network evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15844-5_35

    Google Scholar 

  38. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

    Article  Google Scholar 

  39. Dragoni, M.: A three-phase approach for exploiting opinion mining in computational advertising. IEEE Intell. Syst. 32(3), 21–27 (2017)

    Article  Google Scholar 

  40. Dragoni, M., Petrucci, G.: A neural word embeddings approach for multi-domain sentiment analysis. IEEE Trans. Affect. Comput. PP(99), 1 (2017)

    Article  Google Scholar 

  41. Barbosa, L., Feng, J.: Robust sentiment detection on Twitter from biased and noisy data. In: COLING (Posters), pp. 36–44 (2010)

    Google Scholar 

  42. Bermingham, A., Smeaton, A.F.: Classifying sentiment in microblogs: is brevity an advantage? In: CIKM, pp. 1833–1836 (2010)

    Google Scholar 

  43. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Standford University (2009)

    Google Scholar 

  44. Cambria, E., Hussain, A.: Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Springer, Cham (2015)

    Book  Google Scholar 

  45. Cambria, E., Hussain, A.: Sentic album: content-, concept-, and context-based online personal photo management system. Cogn. Comput. 4(4), 477–496 (2012)

    Article  Google Scholar 

  46. Wang, Q.F., Cambria, E., Liu, C.L., Hussain, A.: Common sense knowledge for handwritten Chinese recognition. Cogn. Comput. 5(2), 234–242 (2013)

    Article  Google Scholar 

  47. Yoshida, Y., Hirao, T., Iwata, T., Nagata, M., Matsumoto, Y.: Transfer learning for multiple-domain sentiment analysis–identifying domain dependent/independent word polarity. In: AAAI, pp. 1286–1291 (2011)

    Google Scholar 

  48. Ponomareva, N., Thelwall, M.: Semi-supervised vs. cross-domain graphs for sentiment analysis. In: RANLP, pp. 571–578 (2013)

    Google Scholar 

  49. Huang, S., Niu, Z., Shi, C.: Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl. Based Syst. 56, 191–200 (2014)

    Article  Google Scholar 

  50. Dragoni, M., da Costa Pereira, C., Tettamanzi, A.G.B., Villata, S.: Smack: an argumentation framework for opinion mining. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI 2016), New York, 9–15 July 2016, pp. 4242–4243. IJCAI/AAAI Press (2016)

    Google Scholar 

  51. Cambria, E., Olsher, D., Rajagopal, D.: Senticnet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: AAAI, pp. 1515–1521 (2014)

    Google Scholar 

  52. Stone, P.J., Dunphy, D., Smith, M.: The General Inquirer: A Computer Approach to Content Analysis. M.I.T Press, Oxford (1966)

    Google Scholar 

  53. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  54. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, pp. 55–60. Association for Computational Linguistics, June 2014

    Google Scholar 

  55. van Rijsbergen, C.J.: Information Retrieval. Butterworth, London (1979)

    MATH  Google Scholar 

  56. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  57. Hellendoorn, H., Thomas, C.: Defuzzification in fuzzy controllers. Intell. Fuzzy Syst. 1, 109–123 (1993)

    Google Scholar 

  58. Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: Calzolari, N., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris. European Language Resources Association (ELRA), May 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Dragoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrucci, G., Dragoni, M. (2017). The IRMUDOSA System at ESWC-2017 Challenge on Semantic Sentiment Analysis. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds) Semantic Web Challenges. SemWebEval 2017. Communications in Computer and Information Science, vol 769. Springer, Cham. https://doi.org/10.1007/978-3-319-69146-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69146-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69145-9

  • Online ISBN: 978-3-319-69146-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics