Abstract
While recent object detection approaches have greatly improved the accuracy and robustness, the detection speed remains a Challenge for the community. In this paper, we propose an efficient fully convolutional network (EFCN) for real time object detection. EFCN employs the lightweight MobileNet [1] as the base network to significantly reduce the computation cost. Meanwhile, it detects objects in feature maps with multiple scales, and deploys a refining module on the top of each of these feature maps to alleviate the accuracy loss brought by the simple base network. We evaluate EFCN on the challenging KITTI [2] dataset and compare it with the state-of-the-art methods. The results show that EFCN keeps a good balance between speed and accuracy, it has \(25{\times }\) fewer parameters and is up to \(31{\times }\) faster than Faster-RCNN [3] while maintaining similar or better accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861
Geiger, A.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Girshick, R.: Fast R-CNN, Computer Science
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size, arXiv preprint arXiv:1602.07360
Hariharan, B., Arbelaez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)
Kong, T., Yao, A., Chen, Y., Sun, F.: Hypernet: towards accurate region proposal generation and joint object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 845–853 (2016)
Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better, arXiv preprint arXiv:1506.04579
Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–2883 (2016)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). doi:10.1007/978-3-319-46448-0_2
Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). doi:10.1007/978-3-319-46493-0_22
Ren, J., Chen, X., Liu, J., Sun, W., Pang, J., Yan, Q., Tai, Y.W., Xu, L.: Accurate single stage detector using recurrent rolling convolution
Acknowledgments
This work was partially supported by the National Natural Science Foundations of China (Grant Nos. 61472386 and 61502444).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhou, X., Feng, YJ., Zhou, X. (2017). Real-Time Object Detection Using Efficient Convolutional Networks. In: Zhou, J., et al. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science(), vol 10568. Springer, Cham. https://doi.org/10.1007/978-3-319-69923-3_68
Download citation
DOI: https://doi.org/10.1007/978-3-319-69923-3_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69922-6
Online ISBN: 978-3-319-69923-3
eBook Packages: Computer ScienceComputer Science (R0)