Abstract
In the era of big data, graph databases have become increasingly important for NoSQL technologies, and many systems can be modeled as graphs for semantic queries. Meanwhile, with the advent of cloud computing, data owners are highly motivated to outsource and store their massive potentially-sensitive graph data on remote untrusted servers in an encrypted form, expecting to retain the ability to query over the encrypted graphs.
To allow effective and private queries over encrypted data, the most well-studied class of structured encryption schemes are searchable symmetric encryption (SSE) designs, which encrypt search structures (e.g., inverted indexes) for retrieving data files. In this paper, we tackle the challenge of designing a Secure Graph DataBase encryption scheme (SecGDB) to encrypt graph structures and enforce private graph queries over the encrypted graph database. Specifically, our construction strategically makes use of efficient additively homomorphic encryption and garbled circuits to support the shortest distance queries with optimal time and storage complexities. To achieve better amortized time complexity over multiple queries, we further propose an auxiliary data structure called query history and store it on the remote server to act as a “caching” resource. We prove that our construction is adaptively semantically-secure in the random oracle model and finally implement and evaluate it on various representative real-world datasets, showing that our approach is practically efficient in terms of both storage and computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A protocol P run between the client and the server is denoted by \((u;v) \leftarrow P(x;y)\), where x and y are the client’s and the server’s inputs, respectively, and u and v are the client’s and the server’s outputs, respectively.
References
Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_7
Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_20
Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_33
Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of CCS 2006, pp. 79–88. ACM (2006)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over encrypted data in outsourced environments. In: Proceedings of ICDE 2014, pp. 664–675. IEEE (2014)
Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. JACM 34(3), 596–615 (1987)
Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: Proceedings of CCS 2014, pp. 310–320. ACM (2014)
Han, W.-S., Lee, S., Park, K., Lee, J.-H., Kim, M.-S., Kim, J., Yu, H.: TurboGraph: a fast parallel graph engine handling billion-scale graphs in a single PC. In: Proceedings of SIGKDD 2013, pp. 77–85. ACM (2013)
Harary, F.: Graph Theory. Westview Press, Boulder (1969)
Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: Proceedings of USENIX Security 2011. USENIX (2011)
Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient privacy-preserving biometric identification. In: Proceedings of NDSS 2011, pp. 250–267 (2011)
Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9
Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_22
Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of CCS 2012, pp. 965–976. ACM (2012)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2014)
Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40
Lai, R.W.F., Chow, S.S.M.: Structured encryption with non-interactive updates and parallel traversal. In: Proceedings of ICDCS 2015, pp. 776–777. IEEE (2015)
Lai, R.W.F., Chow, S.S.M.: Parallel and dynamic structured encryption. In: Proceedings of SECURECOMM 2016 (2016, to appear)
Lai, R.W.F., Chow, S.S.M.: Forward-secure searchable encryption on labeled bipartite graphs. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 478–497. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_24
Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed graphlab: a framework for machine learning and data mining in the cloud. PVLDB 5(8), 716–727 (2012)
Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay-secure two-party computation system. In: Proceedings of USENIX Security 2004, pp. 287–302. USENIX (2004)
Meng, X., Kamara, S., Nissim, K., Kollios, G.: GRECS: graph encryption for approximate shortest distance queries. In: Proceedings of CCS 2015, pp. 504–517. ACM (2015)
Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of SODA 2001, SIAM, pp. 448–457 (2001)
Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: Proceedings of S&P 2013, pp. 334–348. IEEE (2013)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15
Sarwat, M., Elnikety, S., He, Y., Kliot, G.: Horton: Online query execution engine for large distributed graphs. In: Proceedings of ICDE 2012, pp. 1289–1292. IEEE (2012)
Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: Proceedings of NDSS 2014 (2014)
Wang, Q., He, M., Du, M., Chow, S.S., Lai, R.W., Zou, Q.: Searchable encryption over feature-rich data. IEEE Trans. Dependable Secure Comput. PP(99), 1 (2016)
Yao, A.: Protocols for secure computations. In: Proceedings of FOCS 1982, pp. 160–164. IEEE (1982)
Acknowledgment
Qian and Qi’s researches are supported in part by National Natural Science Foundation of China (Grant No. 61373167, U1636219, 61572278), National Basic Research Program of China (973 Program) under Grant No. 2014CB340600, and National High Technology Research and Development Program of China (Grant No. 2015AA016004). Kui’s research is supported in part by US National Science Foundation under grant CNS-1262277. Aziz’s research is supported in part by the NSF under grant CNS-1643207 and the Global Research Lab (GRL) Program of the National Research Foundation (NRF) funded by Ministry of Science, ICT (Information and Communication Technologies) and Future Planning (NRF-2016K1A1A2912757). Qian Wang is the corresponding author.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 International Financial Cryptography Association
About this paper
Cite this paper
Wang, Q., Ren, K., Du, M., Li, Q., Mohaisen, A. (2017). SecGDB: Graph Encryption for Exact Shortest Distance Queries with Efficient Updates. In: Kiayias, A. (eds) Financial Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science(), vol 10322. Springer, Cham. https://doi.org/10.1007/978-3-319-70972-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-70972-7_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70971-0
Online ISBN: 978-3-319-70972-7
eBook Packages: Computer ScienceComputer Science (R0)