Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Capturing the Dynamics of Hashtag-Communities

  • Conference paper
  • First Online:
Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

Abstract

Online media have a huge impact on public opinion, economics and politics. Every day, billions of posts are created and comments are written, covering a broad range of topics. Especially the format of hashtags, as a discrete and condensed version of online content, is a promising entry point for in-depth investigations. In this work we provide a set of methods from static community detection as well as novel approaches for tracing the dynamics of topics in time dependent data. We build temporal and weighted co-occurence networks from hashtags. On static snapshots we infer the community structure using customized methods. We solve the resulting bipartite matching problem between adjacent timesteps, by taking into account higher order memory. This results in a matching that is robust to temporal fluctuations and instabilities of the static community detection. The proposed methodology, tailored to uncover the detailed dynamics of groups of hashtags is adjustable and by that broadly applicable to reveal the temporal behavior of various online topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  2. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. Knowl. Discov. Data (TKDD) 3(4), 16 (2009)

    Google Scholar 

  3. Au Yeung, C.m., Gibbins, N., Shadbolt, N.: Contextualising tags in collaborative tagging systems. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, HT ’09, pp. 251–260. ACM, New York, NY, USA. https://doi.org/10.1145/1557914.1557958. (2009)

  4. Aynaud, T., Fleury, E., Guillaume, J.L., Wang, Q.: Communities in evolving networks: definitions, detection, and analysis techniques. In: Dynamics on and of Complex Networks, Vol. 2, pp. 159–200. Springer (2013)

    Google Scholar 

  5. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks (2009)

    Google Scholar 

  6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008(10), P10008 (2008)

    Google Scholar 

  7. Cancho, R.F.i., Solé, R.V.: The small world of human language. Proc. R. Soc. Lond. B: Biol. Sci. 268(1482), 2261–2265 (2001). https://doi.org/10.1098/rspb.2001.1800

  8. Cazabet, R., Amblard, F., Hanachi, C.: Detection of overlapping communities in dynamical social networks. In: 2010 IEEE Second International Conference on Social Computing, pp. 309–314. https://doi.org/10.1109/socialcom.2010.51. (2010)

  9. Cazabet, R., Takeda, H., Hamasaki, M., Amblard, F.: Using dynamic community detection to identify trends in user-generated content. Soc. Netw. Anal. Min. 2(4), 361–371 (2012). https://doi.org/10.1007/s13278-012-0074-8

    Article  Google Scholar 

  10. Chakraborty, A., Ghosh, S., Ganguly, N.: Detecting overlapping communities in folksonomies. In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media, HT ’12, pp. 213–218. ACM, New York, NY, USA. https://doi.org/10.1145/2309996.2310032 (2012)

  11. Djurdjevac, N., Bruckner, S., Conrad, T.O., Schütte, C.: Random walks on complex modular networks12. JNAIAM 6(1–2), 29–50 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  13. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183. https://doi.org/10.1109/asonam.2010.17. (2010)

  14. Hopcroft, J., K., O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proc. Natl. Acad. Scie. 101(suppl 1), 5249–5253 (2004)

    Google Scholar 

  15. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Quart. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Metzner, P., Schütte, C., Vanden-Eijnden, E.: Transition path theory for markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009). https://doi.org/10.1137/070699500

    Article  MathSciNet  MATH  Google Scholar 

  17. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577 (2006)

    Article  Google Scholar 

  18. Palla, G., Barabasi, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664 (2007)

    Article  Google Scholar 

  19. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  20. Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: A graph-based clustering scheme for identifying related tags in folksonomies. In: Proceedings of the 12th International Conference on Data Warehousing and Knowledge Discovery, DaWaK’10, pp. 65–76. Springer, Berlin, (2010)

    Google Scholar 

  21. Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047 (2014). https://doi.org/10.1103/physrevx.4.011047

  22. Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PloS one 5(1), e8694 (2010)

    Article  Google Scholar 

  23. Rosvall, M., Esquivel, A.V., Lancichinetti, A., West, J.D., Lambiotte, R.: Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 5, 4630 (2014)

    Article  Google Scholar 

  24. Sarich, M., Djurdjevac, N., Bruckner, S., Conrad, T.O., Schütte, C.: Modularity revisited: A novel dynamics-based concept for decomposing complex networks. J. Comput. Dyn. 1(1), 191–212 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sekara, V., Stopczynski, A., Lehmann, S.: Fundamental structures of dynamic social networks. Proc. Natl. Acad. Sci. USA 113(36), 9977–9982 (2016). https://doi.org/10.1073/pnas.1602803113

    Article  Google Scholar 

  26. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’07, pp. 717–726. ACM, New York, NY, USA. https://doi.org/10.1145/1281192.1281269. (2007)

Download references

Acknowledgements

P. Lorenz and P. Hövel acknowledge the support by Deutsche Forschungsgemeinschaft (DFG) in the framework of the Collaborative Research Center 910. We thank A. Koher, V. Belik, J. Siebert, and C. Bauer for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lorenz, P., Wolf, F., Braun, J., Djurdjevac Conrad, N., Hövel, P. (2018). Capturing the Dynamics of Hashtag-Communities. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics