Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Encoding Pictures with Maximal Codes of Pictures

  • Conference paper
  • First Online:
SOFSEM 2018: Theory and Practice of Computer Science (SOFSEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10706))

  • 1254 Accesses

Abstract

A picture is a two-dimensional counterpart of a string and it is represented by a rectangular array of symbols over a finite alphabet \(\varSigma \). A set X of pictures over \(\varSigma \) is a code if every picture over \(\varSigma \) is tilable in at most one way with pictures in X. Recently, the definition of strong prefix code was introduced as a decidable family of picture codes, and a construction procedure for maximal strong prefix (MSP) codes was proposed. Unfortunately, the notion of completeness cannot be directly transposed from strings to pictures without loosing important properties. We generalize to pictures a special property satisfied by complete set of strings that allow to prove interesting characterization results for MSP codes. Moreover, we show an encoding algorithm for pictures using pictures from a MSP code. The algorithm is based on a new data structure for the representation of MSP codes.

Partially supported by INdAM-GNCS Project 2017, FARB Project ORSA138754 of University of Salerno and FIR Project 375E90 of University of Catania.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. Theor. Comput. Sci. 147, 165–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: a computational model for recognizable two-dimensional languages. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9_27

    Chapter  Google Scholar 

  3. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 47–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40663-8_6

    Chapter  Google Scholar 

  5. Anselmo, M., Giammarresi, D., Madonia, M.: Two dimensional prefix codes of pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5_6

    Chapter  Google Scholar 

  6. Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anselmo, M., Giammarresi, D., Madonia, M.: Structure and measure of a decidable class of two-dimensional codes. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 315–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_24

    Google Scholar 

  8. Anselmo, M., Giammarresi, D., Madonia, M.: Infinite two-dimensional strong prefix codes: characterization and properties. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 19–31. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58631-1_2

    Chapter  Google Scholar 

  9. Anselmo, M., Giammarresi, D., Madonia, M.: Structure and properties of strong prefix codes of pictures. Math. Struct. Comput. Sci. 27(2), 123–142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theor. Comp. Sci 303, 417–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  12. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  14. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_4

    Chapter  Google Scholar 

  15. Grammatikopoulou, A.: Prefix picture sets and picture codes. In Proceedings of the CAI 2005, pp. 255–268. Aristotle University of Thessaloniki (2005)

    Google Scholar 

  16. Lonati, V., Pradella, M.: Strategies to scan pictures with automata based on Wang tiles. RAIRO - Theor. Inf. Appl. 45(1), 163–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moczurad, M., Moczurad, W.: Some open problems in decidability of brick (labelled polyomino) codes. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 72–81. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27798-9_10

    Chapter  Google Scholar 

  18. Moczurad, W.: Decidability of multiset, set and numerically decipherable directed figure codes. Discret. Math. Theor. Comput. Sci. 19(1) (2017)

    Google Scholar 

  19. Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets. Theor. Comput. Sci. 218(2), 297–323 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Madonia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anselmo, M., Giammarresi, D., Madonia, M. (2018). Encoding Pictures with Maximal Codes of Pictures. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73117-9_39

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-73116-2

  • Online ISBN: 978-3-319-73117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics