Abstract
A picture is a two-dimensional counterpart of a string and it is represented by a rectangular array of symbols over a finite alphabet \(\varSigma \). A set X of pictures over \(\varSigma \) is a code if every picture over \(\varSigma \) is tilable in at most one way with pictures in X. Recently, the definition of strong prefix code was introduced as a decidable family of picture codes, and a construction procedure for maximal strong prefix (MSP) codes was proposed. Unfortunately, the notion of completeness cannot be directly transposed from strings to pictures without loosing important properties. We generalize to pictures a special property satisfied by complete set of strings that allow to prove interesting characterization results for MSP codes. Moreover, we show an encoding algorithm for pictures using pictures from a MSP code. The algorithm is based on a new data structure for the representation of MSP codes.
Partially supported by INdAM-GNCS Project 2017, FARB Project ORSA138754 of University of Salerno and FIR Project 375E90 of University of Catania.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. Theor. Comput. Sci. 147, 165–180 (1995)
Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: a computational model for recognizable two-dimensional languages. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9_27
Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529 (2009)
Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 47–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40663-8_6
Anselmo, M., Giammarresi, D., Madonia, M.: Two dimensional prefix codes of pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-5_6
Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)
Anselmo, M., Giammarresi, D., Madonia, M.: Structure and measure of a decidable class of two-dimensional codes. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 315–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_24
Anselmo, M., Giammarresi, D., Madonia, M.: Infinite two-dimensional strong prefix codes: characterization and properties. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 19–31. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58631-1_2
Anselmo, M., Giammarresi, D., Madonia, M.: Structure and properties of strong prefix codes of pictures. Math. Struct. Comput. Sci. 27(2), 123–142 (2017)
Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theor. Comp. Sci 303, 417–430 (2003)
Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)
Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)
Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford (1994)
Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_4
Grammatikopoulou, A.: Prefix picture sets and picture codes. In Proceedings of the CAI 2005, pp. 255–268. Aristotle University of Thessaloniki (2005)
Lonati, V., Pradella, M.: Strategies to scan pictures with automata based on Wang tiles. RAIRO - Theor. Inf. Appl. 45(1), 163–180 (2011)
Moczurad, M., Moczurad, W.: Some open problems in decidability of brick (labelled polyomino) codes. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 72–81. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27798-9_10
Moczurad, W.: Decidability of multiset, set and numerically decipherable directed figure codes. Discret. Math. Theor. Comput. Sci. 19(1) (2017)
Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets. Theor. Comput. Sci. 218(2), 297–323 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Anselmo, M., Giammarresi, D., Madonia, M. (2018). Encoding Pictures with Maximal Codes of Pictures. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-73117-9_39
Published:
Publisher Name: Edizioni della Normale, Cham
Print ISBN: 978-3-319-73116-2
Online ISBN: 978-3-319-73117-9
eBook Packages: Computer ScienceComputer Science (R0)