Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algorithms and Bounds for Very Strong Rainbow Coloring

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

A well-studied coloring problem is to assign colors to the edges of a graph G so that, for every pair of vertices, all edges of at least one shortest path between them receive different colors. The minimum number of colors necessary in such a coloring is the strong rainbow connection number (\(\mathbf {src}(G)\)) of the graph. When proving upper bounds on \(\mathbf {src}(G)\), it is natural to prove that a coloring exists where, for every shortest path between every pair of vertices in the graph, all edges of the path receive different colors. Therefore, we introduce and formally define this more restricted edge coloring number, which we call very strong rainbow connection number (\(\mathbf {vsrc}(G)\)).

In this paper, we give upper bounds on \(\mathbf {vsrc}(G)\) for several graph classes, some of which are tight. These immediately imply new upper bounds on \(\mathbf {src}(G)\) for these classes, showing that the study of \(\mathbf {vsrc}(G)\) enables meaningful progress on bounding \(\mathbf {src}(G)\). Then we study the complexity of the problem to compute \(\mathbf {vsrc}(G)\), particularly for graphs of bounded treewidth, and show this is an interesting problem in its own right. We prove that \(\mathbf {vsrc}(G)\) can be computed in polynomial time on cactus graphs; in contrast, this question is still open for \(\mathbf {src}(G)\). We also observe that deciding whether \(\mathbf {vsrc}(G) = k\) is fixed-parameter tractable in k and the treewidth of G. Finally, on general graphs, we prove that there is no polynomial-time algorithm to decide whether \(\mathbf {vsrc}(G) \le 3\) nor to approximate \(\mathbf {vsrc}(G)\) within a factor \(n^{1-\varepsilon }\), unless \(\text {P}=\text {NP}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [1, 14] mention NP \(\ne \) ZPP as the complexity assumption but one can use P \(\ne \) NP because of [23].

  2. 2.

    This lemma holds for any graph, not necessarily cactus.

References

  1. Ananth, P., Nasre, M., Sarpatwar, K.K.: Rainbow connectivity: Hardness and tractability. In: Chakraborty, S., Kumar, A. (eds.) Proceedings of FSTTCS 2011. LIPIcs, vol. 13, pp. 241–251. Schloss Dagstuhl (2011)

    Google Scholar 

  2. Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow connection number and radius. Graphs Comb. 30(2), 275–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39, 546–563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms for rainbow connection. J. Comb. Optim. 21(3), 330–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandran, L.S., Das, A., Rajendraprasad, D., Varma, N.M.: Rainbow connection number and connected dominating sets. J. Graph Theory 71(2), 206–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandran, L.S., Rajendraprasad, D.: Rainbow colouring of split and threshold graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 181–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32241-9_16

    Chapter  Google Scholar 

  7. Chandran, L.S., Rajendraprasad, D.: Inapproximability of rainbow colouring. In: Seth, A., Vishnoi, N.K. (eds.) Proceedings of FSTTCS 2013. LIPIcs, vol. 24, pp. 153–162. Schloss Dagstuhl (2013)

    Google Scholar 

  8. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem. 133(1), 85–98 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Eiben, E., Ganian, R., Lauri, J.: On the complexity of rainbow coloring problems. Discret. Appl. Math. (2016, in press). https://doi.org/10.1016/j.dam.2016.10.021

  10. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Canad. J. Math 18(106–112), 86 (1966)

    MathSciNet  MATH  Google Scholar 

  11. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    Google Scholar 

  12. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. JCTB 16(1), 47–56 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algorithmica 68(2), 312–336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keranen, M., Lauri, J.: Computing minimum rainbow and strong rainbow colorings of block graphs. arXiv preprint arXiv:1405.6893 (2014)

  15. Kowalik, Ł., Lauri, J., Socala, A.: On the fine-grained complexity of rainbow coloring. In: Sankowski, P., Zaroliagis, C.D. (eds.) Proceedings of ESA 2016. LIPIcs, vol. 57, pp. 58:1–58:16. Schloss Dagstuhl (2016)

    Google Scholar 

  16. Lauri, J.: Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds, vol. 1428. Tampere University of Technology Publication, Tampere (2016)

    Google Scholar 

  17. Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Comb. 29(1), 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, X., Sun, Y.: Rainbow Connections of Graphs. Springer Science & Business Media, Boston (2012). https://doi.org/10.1007/978-1-4614-3119-0

    Book  MATH  Google Scholar 

  19. Li, X., Sun, Y.: An updated survey on rainbow connections of graphs - a dynamic survey. Theory Appl. Graphs 0, 3 (2017)

    Google Scholar 

  20. Roberts, F.S.: Applications of edge coverings by cliques. Discret. Appl. Math. 10(1), 93–109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. JCTB 7, 309–322 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Uchizawa, K., Aoki, T., Ito, T., Suzuki, A., Zhou, X.: On the rainbow connectivity of graphs: complexity and FPT algorithms. Algorithmica 67(2), 161–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of STOC 2006, pp. 681–690. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davis Issac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandran, L.S., Das, A., Issac, D., van Leeuwen, E.J. (2018). Algorithms and Bounds for Very Strong Rainbow Coloring. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics