Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Convolutional Artery/Vein Classification of Retinal Vessels

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

Abstract

The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents a new approach to solve this problem by means of a Fully-Connected Convolutional Neural Network that is specifically adapted for artery/vein classification. For this, a loss function that focuses only on pixels belonging to the retinal vessel tree is built. The relevance of providing the model with different chromatic components of the source images is also analyzed. The performance of the proposed method is evaluated on the RITE dataset of retinal images, achieving promising results, with an accuracy of \(96\%\) on large caliber vessels, and an overall accuracy of \(84\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Costa, P., Campilho, A.: Convolutional bag of words for diabetic retinopathy detection from eye fundus images. IPSJ Trans. Comput. Vis. Appl. 9(1), 10 (2017)

    Article  Google Scholar 

  2. Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic method for the estimation of arteriolar-to-venular ratio in retinal images. In: IEEE International Symposium on Computer-Based Medical Systems, pp. 512–513, June 2013

    Google Scholar 

  3. Dashtbozorg, B., Mendonça, A.M., Campilho, A.: Optic disc segmentation using the sliding band filter. Comput. Biol. Med. 56, 1–12 (2015)

    Article  Google Scholar 

  4. Dashtbozorg, B., Mendonca, A.M., Campilho, A.: An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 23(3), 1073–1083 (2014)

    Article  MathSciNet  Google Scholar 

  5. Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.: Retinal artery-vein classification via topology estimation. IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015)

    Article  Google Scholar 

  6. Hu, Q., Abràmoff, M.D., Garvin, M.K.: Automated separation of binary overlapping trees in low-contrast color retinal images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 436–443. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_54

    Chapter  Google Scholar 

  7. Ikram, M.K., de Jong, F.J., Vingerling, J.R., Witteman, J.C.M., Hofman, A., Breteler, M.M.B., de Jong, P.T.V.M.: Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The rotterdam study. Invest. Ophthalmol. Vis. Sci. 45(7), 2129–2134 (2004)

    Article  Google Scholar 

  8. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–13 (2014)

    Google Scholar 

  9. Kondermann, C., Kondermann, D., Yan, M.: Blood vessel classification into arteries and veins in retinal images. In: Image Processing, p. 651247 (2007)

    Google Scholar 

  10. Meyer, M.I., Costa, P., Galdran, A., Mendonça, A.M., Campilho, A.: A deep neural network for vessel segmentation of scanning laser ophthalmoscopy images. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 507–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_56

    Chapter  Google Scholar 

  11. Nguyen, T.T., Wong, T.Y.: Retinal vascular changes and diabetic retinopathy. Curr. Diabetes Rep. 9(4), 277–283 (2009)

    Article  Google Scholar 

  12. Niemeijer, M., van Ginneken, B., Abramoff, M.D.: Automatic classification of retinal vessels into arteries and veins. In: SPIE medical imaging. International Society for Optics and Photonics, November 2016, vol. 7260, pp. 1–8 (2009)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Rothaus, K., Jiang, X., Rhiem, P.: Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Image Vis. Comput. 27(7), 864–875 (2009)

    Article  Google Scholar 

  15. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.V.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  16. Welikala, R., Foster, P., Whincup, P., Rudnicka, A., Owen, C., Strachan, D., Barman, S.: Automated arteriole and venule classification using deep learning for retinal images from the UK biobank cohort. Comput. Biol. Med. 90, 23–32 (2017)

    Article  Google Scholar 

  17. Yu, H., Barriga, S., Agurto, C., Nemeth, S., Bauman, W., Soliz, P.: Automated Retinal Vessel Type Classification in Color Fundus Images, vol. 8670 (2013)

    Google Scholar 

  18. Zamperini, A., Giachetti, A., Trucco, E., Chin, K.S.: Effective features for artery-vein classification in digital fundus images. In: Proceedings - IEEE Symposium on Computer-Based Medical Systems (2012)

    Google Scholar 

Download references

Acknowledgments

This work is funded by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and the European Regional Development Fund (ERDF), within the project “NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-000016”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ines Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, M.I., Galdran, A., Costa, P., Mendonça, A.M., Campilho, A. (2018). Deep Convolutional Artery/Vein Classification of Retinal Vessels. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics