Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-network User Identification via Graph-Aware Embedding

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10938))

Included in the following conference series:

Abstract

User identification is widely used in anomaly detection, recommendation system and so on. Previous approaches focus on extraction of features describing users, and the learners try to emphasize the differences between different user identities. However, one applicable user identification scenario occurs in the circumstance of social network, where features of users are not acquirable while only relationships between users are provided. In this paper, we aim at the later situation, i.e., the Network User Identification, where features of users cannot be extracted in social network applications. We consider the information limitation of the single network and focus on utilizing the multiple relationships between identities from multi-networks. Different from the existing common subspace methods in Cross-Network User Identification, we propose a more discriminative Graph-Aware Embedding (GAEM) method for modeling the relationships as well as the transformation between different social networks explicitly in one unified framework. As a consequence, we can get more accurate predictions of the user identities directly based on the learned transferring model with GAEM. The experimental evaluations on real-world data demonstrate the superiorities of our proposed method comparing to the state-of-the-art.

This work was supported by NSFC (61773198).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: WSDM, pp. 635–644 (2011)

    Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIIMS 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, pp. 585–591 (2001)

    Google Scholar 

  4. Berkhin, P.: A survey on pagerank computing. Internet Math. 2(1), 73–120 (2005)

    Article  MathSciNet  Google Scholar 

  5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT, pp. 92–100 (1999)

    Google Scholar 

  6. Cai, J.F., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIOPT 20(4), 1956–1982 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Liu, Z., Sun, X., Wang, Y.: A game-theoretic framework to identify overlapping communities in social networks. Data Min. Knowledge Disc. 21(2), 224–240 (2010)

    Article  MathSciNet  Google Scholar 

  8. Deng, Z., Sang, J., Xu, C.: Personalized video recommendation based on cross-platform user modeling. In: ICME, pp. 1–6 (2013)

    Google Scholar 

  9. Han, S., Xu, Y.: Link prediction in microblog network using supervised learning with multiple features. J. Comput. Phys. 11(1), 72–82 (2016)

    Google Scholar 

  10. Harchaoui, Z., Douze, M., Paulin, M., Dudik, M., Malick, J.: Large-scale image classification with trace-norm regularization. In: CVPR, pp. 3386–3393 (2012)

    Google Scholar 

  11. Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. TPAMI 35(9), 2117 (2013)

    Article  Google Scholar 

  12. Ji, S., Ye, J.: An accelerated gradient method for trace norm minimization. In: ICML, pp. 457–464 (2009)

    Google Scholar 

  13. Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML, pp. 200–209 (1999)

    Google Scholar 

  14. Liu, J., Zhang, F., Song, X., Song, Y.I., Lin, C.Y., Hon, H.W.: What’s in a name?: an unsupervised approach to link users across communities. In: ICWSM, pp. 495–504 (2013)

    Google Scholar 

  15. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: IJCAI, pp. 1774–1780 (2016)

    Google Scholar 

  16. Liu, S., Wang, S., Zhu, F., Zhang, J., Krishnan, R.: Hydra: large-scale social identity linkage via heterogeneous behavior modeling. In: SIGMOD, pp. 51–62 (2014)

    Google Scholar 

  17. Mu, X., Zhu, F., Wang, J., Zhou, Z.H.: User identity linkage by latent user space modelling. In: SIGKDD, pp. 1775–1784 (2016)

    Google Scholar 

  18. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: SP, Oakland, California, pp. 173–187 (2009)

    Google Scholar 

  19. Nie, Y., Jia, Y., Li, S., Zhu, X., Li, A., Zhou, B.: Identifying users across social networks based on dynamic core interests. Neurocomputing 210, 107–115 (2016)

    Article  Google Scholar 

  20. Perito, D., Castelluccia, C., AliKaafar, M., Manils, P.: How unique and traceable are usernames? In: PET, pp. 1–17 (2011)

    Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  22. Shu, K., Wang, S., Tang, J., Zafarani, R., Liu, H.: User identity linkage across online social networks: a review. SIGKDD Explor. 18(2), 5–17 (2016)

    Article  Google Scholar 

  23. Tan, S., Guan, Z., Cai, D., Qin, X., Bu, J., Chen, C.: Mapping users across networks by manifold alignment on hypergraph. In: AAAI, pp. 159–165 (2014)

    Google Scholar 

  24. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding, pp. 1067–1077 (2015)

    Google Scholar 

  25. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  26. Wei, Y., Singh, L.: Using network flows to identify users sharing extremist content on social media. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 330–342. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_26

    Chapter  Google Scholar 

  27. Ye, H.J., Zhan, D.C., Miao, Y., Jiang, Y., Zhou, Z.H.: Rank consistency based multi-view learning: a privacy-preserving approach. In: CIKM, pp. 991–1000 (2015)

    Google Scholar 

  28. Zafarani, R., Liu, H.: Connecting corresponding identities across communities. In: ICWSM, pp. 354–357 (2009)

    Google Scholar 

  29. Zhang, J., Kong, X., Yu, P.S.: Transferring heterogeneous links across location-based social networks. In: WSDM. pp. 495–504 (2014)

    Google Scholar 

  30. Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across social networks. In: IJCAI, pp. 1620–1626 (2015)

    Google Scholar 

  31. Zhang, M.L., Zhou, B.B., Liu, X.Y.: Partial label learning via feature-aware disambiguation. In: SIGKDD, pp. 1335–1344 (2016)

    Google Scholar 

  32. Zhang, Y., Tang, J., Yang, Z., Pei, J., Yu, P.S.: Cosnet: Connecting heterogeneous social networks with local and global consistency. In: SIGKDD, pp. 1485–1494 (2015)

    Google Scholar 

  33. Zhou, X., Liang, X., Zhang, H., Ma, Y.: Cross-platform identification of anonymous identical users in multiple social media networks. TKDE 28(2), 411–424 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Chuan Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Zhan, DC., Wu, YF., Jiang, Y. (2018). Multi-network User Identification via Graph-Aware Embedding. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10938. Springer, Cham. https://doi.org/10.1007/978-3-319-93037-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93037-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93036-7

  • Online ISBN: 978-3-319-93037-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics