Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characterising Chordal Contact \(B_0\)-VPG Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10856))

Included in the following conference series:

  • 874 Accesses

Abstract

A graph G is a \(B_0\)-VPG graph if it is the vertex intersection graph of horizontal and vertical paths on a grid. A graph G is a contact \(B_0\)-VPG graph if the vertices can be represented by interiorly disjoint horizontal or vertical paths on a grid and two vertices are adjacent if and only if the corresponding paths touch. In this paper, we present a minimal forbidden induced subgraph characterisation of contact \(B_0\)-VPG graphs within the class of chordal graphs and provide a polynomial-time algorithm for recognising these graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcón, L., Bonomo, F., Mazzoleni, M.P.: Vertex intersection graphs of paths on a grid: characterization within block graphs. Graphs Comb. 33(4), 653–664 (2017)

    Article  MathSciNet  Google Scholar 

  2. Asinowski, A., Cohen, E., Golumbic, M., Limouzy, V., Lipshteyn, M., Stern, M.: Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16, 129–150 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2007)

    MATH  Google Scholar 

  4. Chaplick, S., Cohen, E., Stacho, J.: Recognizing some subclasses of vertex intersection graphs of 0-Bend paths in a grid. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 319–330. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-1_29

    Chapter  MATH  Google Scholar 

  5. Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. J. Graph Algorithms Appl. 17(4), 475–494 (2013)

    Article  MathSciNet  Google Scholar 

  6. Cohen, E., Golumbic, M.C., Ries, B.: Characterizations of cographs as intersection graphs of paths on a grid. Discrete Appl. Math. 178, 46–57 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cohen, E., Golumbic, M.C., Trotter, W.T., Wang, R.: Posets and VPG graphs. Order 33(1), 39–49 (2016)

    Article  MathSciNet  Google Scholar 

  8. Felsner, S., Knauer, K., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of L-shapes and segments in the plane. Discrete Appl. Math. 206, 48–55 (2016)

    Article  MathSciNet  Google Scholar 

  9. de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs by segments. Intuitive Geom. 63, 109–117 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60618-1_88

    Chapter  Google Scholar 

  11. Golumbic, M.C., Ries, B.: On the intersection graphs of orthogonal line segments in the plane: characterizations of some subclasses of chordal graphs. Graphs Comb. 29(3), 499–517 (2013)

    Article  MathSciNet  Google Scholar 

  12. Gonçalves, D., Insenmann, L., Pennarum, C.: Planar Graphs as L-intersection or L-contact graphs, arXiv:1707.08833v2 (2017)

  13. Nieke, A., Felsner, S.: Vertex contact representations of paths on a grid. J. Graph Algorithms Appl. 19(3), 817–849 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pía Mazzoleni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonomo, F., Mazzoleni, M.P., Rean, M.L., Ries, B. (2018). Characterising Chordal Contact \(B_0\)-VPG Graphs. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96151-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96150-7

  • Online ISBN: 978-3-319-96151-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics