Abstract
A graph G is a \(B_0\)-VPG graph if it is the vertex intersection graph of horizontal and vertical paths on a grid. A graph G is a contact \(B_0\)-VPG graph if the vertices can be represented by interiorly disjoint horizontal or vertical paths on a grid and two vertices are adjacent if and only if the corresponding paths touch. In this paper, we present a minimal forbidden induced subgraph characterisation of contact \(B_0\)-VPG graphs within the class of chordal graphs and provide a polynomial-time algorithm for recognising these graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alcón, L., Bonomo, F., Mazzoleni, M.P.: Vertex intersection graphs of paths on a grid: characterization within block graphs. Graphs Comb. 33(4), 653–664 (2017)
Asinowski, A., Cohen, E., Golumbic, M., Limouzy, V., Lipshteyn, M., Stern, M.: Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16, 129–150 (2012)
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2007)
Chaplick, S., Cohen, E., Stacho, J.: Recognizing some subclasses of vertex intersection graphs of 0-Bend paths in a grid. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 319–330. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-1_29
Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. J. Graph Algorithms Appl. 17(4), 475–494 (2013)
Cohen, E., Golumbic, M.C., Ries, B.: Characterizations of cographs as intersection graphs of paths on a grid. Discrete Appl. Math. 178, 46–57 (2014)
Cohen, E., Golumbic, M.C., Trotter, W.T., Wang, R.: Posets and VPG graphs. Order 33(1), 39–49 (2016)
Felsner, S., Knauer, K., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of L-shapes and segments in the plane. Discrete Appl. Math. 206, 48–55 (2016)
de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs by segments. Intuitive Geom. 63, 109–117 (1991)
Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60618-1_88
Golumbic, M.C., Ries, B.: On the intersection graphs of orthogonal line segments in the plane: characterizations of some subclasses of chordal graphs. Graphs Comb. 29(3), 499–517 (2013)
Gonçalves, D., Insenmann, L., Pennarum, C.: Planar Graphs as L-intersection or L-contact graphs, arXiv:1707.08833v2 (2017)
Nieke, A., Felsner, S.: Vertex contact representations of paths on a grid. J. Graph Algorithms Appl. 19(3), 817–849 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bonomo, F., Mazzoleni, M.P., Rean, M.L., Ries, B. (2018). Characterising Chordal Contact \(B_0\)-VPG Graphs. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-96151-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96150-7
Online ISBN: 978-3-319-96151-4
eBook Packages: Computer ScienceComputer Science (R0)