Abstract
We present a survey of the recent research efforts in integrating model learning with model-based testing. We distinguished two strands of work in this domain, namely test-based learning (also called test-based modeling) and learning-based testing. We classify the results in terms of their underlying models, their test purpose and techniques, and their target domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The authors also briefly discuss stochastic properties of Mealy machines, though.
References
Aarts, F.: Tomte: bridging the gap between active learning and real-world systems. Ph.D. thesis, Department of Computer Science (2014)
Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Proceedings of the 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2013, pp. 461–468. IEEE Computer Society, Washington, DC (2013)
Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_11
Arts, T., Hughes, J., Johansson, J., Wiger, U.T.: Testing telecoms software with QuviQ QuickCheck. In: Feeley, M., Trinder, P.W. (eds.) Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang, Portland, Oregon, USA, 16 September 2006, pp. 2–10. ACM (2006)
Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_4
Adamis, G., Kovács, G., Réthy, G.: Generating performance test model from conformance test logs. In: Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R. (eds.) SDL 2015. LNCS, vol. 9369, pp. 268–284. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24912-4_19
Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F.W., Verwer, S.: Learning and testing the bounded retransmission protocol. In: Heinz, J., de la Higuera, C., Oates, T. (eds.) Proceedings of the Eleventh International Conference on Grammatical Inference, ICGI 2012, University of Maryland, College Park, USA, 5–8 September 2012, JMLR Proceedings, vol. 21, pp. 4–18. JMLR.org (2012)
Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F.W., Verwer, S.: Improving active mealy machine learning for protocol conformance testing. Mach. Learn. 96(1–2), 189–224 (2014)
Ansin, R., Lundberg, D.: Automated inference of excitable cell models as hybrid automata. Bachelor thesis. School of Computer Science and Communication, KTH Stockholm (2013)
Alpaydin, E.: Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2014)
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
Aerts, A., Reniers, M.A., Mousavi, M.R.: Model-based testing of cyber-physical systems. In: Song, H., Rawat, D.B., Jeschke, S., Brecher, C. (eds.) Cyber-Physical Systems Foundations, Principles and Applications, Chap. 19, pp. 287–304. Elsevier (2016)
Argyros, G., Stais, I., Jana, S., Keromytis, A.D., Kiayias, A.: SFADiff: automated evasion attacks and fingerprinting using black-box differential automata learning. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1690–1701. ACM (2016)
Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_54
Arts, T., Thompson, S.: From test cases to FSMs: augmented test-driven development and property inference. In: Proceedings of the 9th ACM SIGPLAN Workshop on Erlang, Erlang 2010 (2010)
Aichernig, B.K., Tappler, M.: Learning from faults: mutation testing in active automata learning. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_2
Aichernig, B.K., Tappler, M.: Probabilistic black-box reachability checking. In: Lahiri, S.K., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 50–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_4
Bonzanni, N., Feenstra, K.A., Fokkink, W., Heringa, J.: Petri nets are a biologist’s best friend. In: Fages, F., Piazza, C. (eds.) FMMB 2014. LNCS, vol. 8738, pp. 102–116. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10398-3_8
Bonzanni, N., Feenstra, K.A., Fokkink, W., Krepska, E.: What can formal methods bring to systems biology? In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 16–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_2
Bergadano, F., Gunetti, D.: Testing by means of inductive program learning. ACM Trans. Softw. Eng. Methodol. 5(2), 119–145 (1996)
Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9_14
Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behavior protocols for composable web-services. In: van Vliet, H., Issarny, V. (eds.) Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering 2009, Amsterdam, The Netherlands, 24–28 August 2009, pp. 141–150. ACM (2009)
Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D.: MACE: model-inference-assisted concolic exploration for protocol and vulnerability discovery. In: Proceedings of the 20th USENIX Conference on Security. USENIX Association (2011)
Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: an interactive learning competition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B.W. (eds.) FSMNLP 2009. LNCS (LNAI), vol. 6062, pp. 139–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14684-8_15
Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 250–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_18
Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite state machines. Formal Aspects Comput. 28(2), 233–263 (2016)
Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)
Choi, W., Necula, G.C., Sen, K.: Guided GUI testing of android apps with minimal restart and approximate learning. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, Part of SPLASH 2013, Indianapolis, IN, USA, 26–31 October 2013, pp. 623–640. ACM (2013)
Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58473-0_144
Collins, P.: Model-checking in systems biology - from micro to macro. In: Fages, F., Piazza, C. (eds.) FMMB 2014. LNCS, vol. 8738, pp. 1–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10398-3_1
Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages. In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 43–56. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48057-9_4
Dinca, I., Ipate, F., Mierla, L., Stefanescu, A.: Learn and test for Event-B – a Rodin plugin. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 361–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7_32
Dinca, I., Ipate, F., Stefanescu, A.: Model learning and test generation for Event-B decomposition. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 539–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_40
Dupont, P., Lambeau, B., Damas, C., van Lamsweerde, A.: The QSM algorithm and its application to software behavior model induction. Appl. Artif. Intell. 22(1–2), 77–115 (2008)
de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, 12–14 August 2015, pp. 193–206. USENIX Association (2015)
Elkind, E., Genest, B., Peled, D.A., Qu, H.: Grey-box checking. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–435. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116_30
Fiterău-Broştean, P., Janssen, R., Vaandrager, F.W.: Learning fragments of the TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 78–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10702-8_6
Fiterău-Broştean, P., Janssen, R., Vaandrager, F.W.: Combining model learning and model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_25
Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Verleg, P.: Model learning and model checking of SSH implementations. In: Erdogmus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, 10–14 July 2017, pp. 142–151. ACM (2017)
Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)
Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by inference, testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 216–233. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68524-1_16
Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_25
Groce, A., Peled, D.A., Yannakakis, M.: AMC: an adaptive model checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 521–525. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_44
Gebizli, C.Ş., Sözer, H.: Automated refinement of models for model-based testing using exploratory testing. Softw. Qual. J. 25(3), 1–27 (2016)
Hossen, K., Groz, R., Oriat, C., Richier, J.-L.: Automatic model inference of web applications for security testing. In: Seventh IEEE International Conference on Software Testing, Verification and Validation, ICST 2014 Workshops Proceedings, 31 March–4 April 2014, Cleveland, Ohio, USA, pp. 22–23. IEEE Computer Society (2014)
Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5_6
Hung, P.N., Katayama, T.: Modular conformance testing and assume-guarantee verification for evolving component-based software. In: 15th Asia-Pacific Software Engineering Conference (APSEC 2008), 3–5 December 2008, Beijing, China, pp. 479–486. IEEE Computer Society (2008)
Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_31
Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java container classes. IEEE Trans. Softw. Eng. 33(8), 526–543 (2007)
Hsu, Y., Shu, G., Lee, D.: A model-based approach to security flaw detection of network protocol implementations. In: Proceedings of the 16th Annual IEEE International Conference on Network Protocols, ICNP 2008, Orlando, Florida, USA, 19–22 October 2008, pp. 114–123. IEEE Computer Society (2008)
Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_55
Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D.A. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_19
Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32
Ipate, F., Stefanescu, A., Dinca, I.: Model learning and test generation using cover automata. Comput. J. 58(5), 1140–1159 (2015)
Kunze, S., Mostowski, W., Mousavi, M.R., Varshosaz, M.: Generation of failure models through automata learning. In: Workshop on Automotive Systems/Software Architectures (WASA 2016), pp. 22–25. IEEE Computer Society, April 2016
Khosrowjerdi, H., Meinke, K., Rasmusson, A.: Automated behavioral requirements testing for automotive ECU applications (2016, Submitted)
Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)
Lai, Z., Cheung, S.C., Jiang, Y.: Dynamic model learning using genetic algorithm under adaptive model checking framework. In: Sixth International Conference on Quality Software (QSIC 2006), 26–28 October 2006, Beijing, China, pp. 410–417. IEEE Computer Society (2006)
Li, K., Groz, R., Shahbaz, M.: Integration testing of components guided by incremental state machine learning. In: McMinn, P. (ed.) Testing: Academia and Industry Conference - Practice and Research Techniques (TAIC PART 2006), 29–31 August 2006, Windsor, United Kingdom, pp. 59–70. IEEE Computer Society (2006)
Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based on learning parameterized I/O models. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116_31
Lachmann, R., Schaefer, I.: Towards efficient and effective testing in automotive software development. In: Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.) 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität meistern, 22–26 September 2014, Stuttgart, Deutschland. LNI, vol. 232, pp. 2181–2192. GI (2014)
Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification. IEEE Trans. Comput. 43(3), 306–320 (1994)
Comparetti, P.M., Wondracek, G., Krügel, C., Kirda, E.: Prospex: protocol specification extraction. In: 30th IEEE Symposium on Security and Privacy (S&P 2009), 17–20 May 2009, Oakland, California, USA, pp. 110–125. IEEE Computer Society (2009)
Meinke, K.: Automated black-box testing of functional correctness using function approximation. SIGSOFT Softw. Eng. Notes 29(4), 143–153 (2004)
Margaria, T., Hinchey, M.G., Raffelt, H., Rash, J.L., Rouff, C.A., Steffen, B.: Completing and adapting models of biological processes. In: Pan, Y., Rammig, F.J., Schmeck, H., Solar, M. (eds.) BICC 2006. IIFIP, vol. 216, pp. 43–54. Springer, Boston, MA (2006). https://doi.org/10.1007/978-0-387-34733-2_5
Mitchel, T.M.: Machine Learning. McGraw Hill, New York (1997)
Meinke, K., Niu, F.: A learning-based approach to unit testing of numerical software. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 221–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3_16
Meinke, K., Nycander, P.: Learning-based testing of distributed microservice architectures: correctness and fault injection. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 3–10. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-49224-6_1
Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for legacy reactive systems. In: 2004 Ninth IEEE International High-Level Design Validation and Test Workshop, pp. 95–100. IEEE (2004)
Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-based testing of electronic passports. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 207–209. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7_19
Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5_11
Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley Publishing, Hoboken (2011)
Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Dortmund University of Technology (2003)
Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In: Advances in Structural and Syntactic Pattern Recognition. Series in Machine Perception and Artificial Intelligence, vol. 5, pp. 99–108. World Scientific (1992)
Oostdijk, M., Rusu, V., Tretmans, J., de Vries, R.G., Willemse, T.A.C.: Integrating verification, testing, and learning for cryptographic protocols. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 538–557. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5_28
Petrenko, A., Li, K., Groz, R., Hossen, K., Oriat, C.: Inferring approximated models for systems engineering. In: 15th International IEEE Symposium on High-Assurance Systems Engineering, HASE 2014, Miami Beach, FL, USA, 9–11 January 2014, pp. 249–253. IEEE Computer Society (2014)
Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) PSTV 1999, FORTE 1999. IAICT, vol. 28, pp. 225–240. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-35578-8_13
Papadopoulos, P., Walkinshaw, N.: Black-box test generation from inferred models. In: Harrison, R., Bener, A.B., Turhan, B. (eds.) 4th IEEE/ACM International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, RAISE 2015, Florence, Italy, 17 May 2015, pp. 19–24. IEEE Computer Society (2015)
Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid test of web applications with webtest. In: Bultan, T., Xie, T. (eds.) Proceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web Services and Applications, Held in Conjunction with the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2008), TAV-WEB 2008, Seattle, Washington, USA, 21 July 2008, pp. 1–7. ACM (2008)
Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. STTT 11(4), 307–324 (2009)
Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comput. 103(2), 299–347 (1993)
Sivakorn, S., Argyros, G., Pei, K., Keromytis, A.D., Jana, S.: HVLearn: automated black-box analysis of hostname verification in SSL/TLS implementations. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 521–538. IEEE Computer Society (2017)
Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_14
Shahbaz, M., Groz, R.: Analysis and testing of black-box component-based systems by inferring partial models. Softw. Test. Verification Reliab. 24(4), 253–288 (2014)
Shu, G., Hsu, Y., Lee, D.: Detecting communication protocol security flaws by formal fuzz testing and machine learning. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 299–304. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68855-6_19
Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_8
Shu, G., Lee, D.: Testing security properties of protocol implementations - a machine learning based approach. In: 27th IEEE International Conference on Distributed Computing Systems (ICDCS 2007), 25–29 June 2007, Toronto, Ontario, Canada, p. 25. IEEE Computer Society (2007)
Schulze, C., Lindvall, M., Bjorgvinsson, S., Wiegand, R.: Model generation to support model-based testing applied on the NASA DAT web-application - an experience report. In: 26th IEEE International Symposium on Software Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA, 2–5 November 2015, pp. 77–87. IEEE Computer Society (2015)
Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized components through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) FATES/TestCom - 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73066-8_22
Shahbaz, M., Li, K., Groz, R.: Learning parameterized state machine model for integration testing. In: 31st Annual International Computer Software and Applications Conference, COMPSAC 2007, Beijing, China, 24–27 July 2007, vol. 2, pp. 755–760. IEEE Computer Society (2007)
Smeenk, W., Moerman, J., Vaandrager, F.W., Jansen, D.N.: Applying automata learning to embedded control software. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_5
Shahbaz, M., Parreaux, B., Klay, F.: Model inference approach for detecting feature interactions in integrated systems. In: du Bousquet, L., Richier, J.-L. (eds.) Feature Interactions in Software and Communication Systems IX, International Conference on Feature Interactions in Software and Communication Systems, ICFI 2007, 3–5 September 2007, Grenoble, France, pp. 161–171. IOS Press (2007)
Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication via active automata learning. In: 2017 IEEE International Conference on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017, pp. 276–287 (2017)
Tretmans, J., Brinksma, E.: TorX: automated model-based testing. In: Hartman, A., Dussa-Ziegler, K. (eds.) First European Conference on Model-Driven Software Engineering, pp. 31–43, December 2003
Tretmans, J.: Model-based testing and some steps towards test-based modelling. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_9
Utting, M., Legeard, B.: Practical Model-Based Testing - A Tools Approach. Morgan Kaufmann, Burlington (2007)
Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012)
Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 9(4), 653–665 (1973)
Volpato, M., Tretmans, J.: Active learning of nondeterministic systems from an ioco perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 220–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9_16
Volpato, M., Tretmans, J.: Approximate active learning of nondeterministic input output transition systems. ECEASST 72 (2015)
Walkinshaw, N., Bogdanov, K., Derrick, J., Paris, J.: Increasing functional coverage by inductive testing: a case study. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 126–141. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3_10
Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Reverse engineering state machines by interactive grammar inference. In: 14th Working Conference on Reverse Engineering (WCRE 2007), 28–31 October 2007, Vancouver, BC, Canada, pp. 209–218. IEEE Computer Society (2007)
Walkinshaw, N., Derrick, J., Guo, Q.: Iterative refinement of reverse-engineered models by model-based testing. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_20
Weyuker, E.J.: Assessing test data adequacy through program inference. ACM Trans. Program. Lang. Syst. 5(4), 641–655 (1983)
Walkinshaw, N., Fraser, G.: Uncertainty-driven black-box test data generation. In: 2017 IEEE International Conference on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017, pp. 253–263 (2017)
Yeh, T., Chang, T.-H., Miller, R.C.: Sikuli: using GUI screenshots for search and automation. In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, pp. 183–192. ACM (2009)
Acknowledgments
The insightful comments of Karl Meinke and Neil Walkinshaw on an earlier draft led to improvements and are gratefully acknowledged.
The work of B. K. Aichernig and M. Tappler was supported by the TU Graz LEAD project “Dependable Internet of Things in Adverse Environments”. The work of M. R. Mousavi and M. Taromirad has been partially supported by the Swedish Research Council (Vetenskapsradet) award number: 621-2014-5057 (Effective Model-Based Testing of Concurrent Systems) and the Strategic Research Environment ELLIIT. The work of M. R. Mousavi has also been partially supported by the Swedish Knowledge Foundation (Stiftelsen for Kunskaps- och Kompetensutveckling) in the context of the AUTO-CAAS HöG project (number: 20140312).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M. (2018). Model Learning and Model-Based Testing. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds) Machine Learning for Dynamic Software Analysis: Potentials and Limits. Lecture Notes in Computer Science(), vol 11026. Springer, Cham. https://doi.org/10.1007/978-3-319-96562-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-96562-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96561-1
Online ISBN: 978-3-319-96562-8
eBook Packages: Computer ScienceComputer Science (R0)