Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Linear Cryptanalysis of Reduced-Round Speck with a Heuristic Approach: Automatic Search for Linear Trails

  • Conference paper
  • First Online:
Information Security (ISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11060))

Included in the following conference series:

Abstract

Previous research on linear cryptanalysis with Speck has proved that good linear trails and a meaningful distinguisher for variants of Speck can be found. In this paper we use two different linear approximations of modular addition to search for even better linear trails. Also, we have added a heuristic to search for large bias approximations for the state conversion approach. We will explain how the automatic search works and discuss its performance. Finally we illustrate that linear approximations with large bias exist in variants of Speck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525ā€“545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27

    ChapterĀ  Google ScholarĀ 

  2. Ashur, T., Dunkelman, O.: Linear analysis of reduced-round CubeHash. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 462ā€“478. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_27

    ChapterĀ  Google ScholarĀ 

  3. Ashur, T., Bodden, D.: Linear cryptanalysis of reduced-round speck. In: Proceedings of the 37th Symposium on Information Theory in the Benelux (2016)

    Google ScholarĀ 

  4. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546ā€“570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28

    ChapterĀ  Google ScholarĀ 

  5. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-9314-6

    BookĀ  MATHĀ  Google ScholarĀ 

  6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1ā€“6 (2015)

    Google ScholarĀ 

  7. Cho, J.Y., Pieprzyk, J.: Algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 49ā€“64. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_4

    ChapterĀ  Google ScholarĀ 

  8. Cho, J.Y., Pieprzyk, J.: Multiple modular additions and crossword puzzle attack on NLSv2. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 230ā€“248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1_16

    ChapterĀ  Google ScholarĀ 

  9. Dobraunig, C., Eichlseder, M., Mendel, F.: Heuristic tool for linear cryptanalysis with applications to CAESAR candidates. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 490ā€“509. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_20

    ChapterĀ  Google ScholarĀ 

  10. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147ā€“164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9

    ChapterĀ  Google ScholarĀ 

  11. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268ā€“288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14

    ChapterĀ  Google ScholarĀ 

  12. Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226ā€“243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_15

    ChapterĀ  MATHĀ  Google ScholarĀ 

  13. Leurent, G.: Construction of differential characteristics in ARX designs application to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 241ā€“258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_14

    ChapterĀ  MATHĀ  Google ScholarĀ 

  14. Liu, Y., Fu, K., Wang, W., Sun, L., Wang, M.: Linear cryptanalysis of reduced-round SPECK. Inf. Process. Lett. 116(3), 259ā€“266 (2016)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386ā€“397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    ChapterĀ  Google ScholarĀ 

  16. Munshi, A.: The OpenCL specification. In: 2009 IEEE Hot Chips 21 Symposium (HCS), pp. 1ā€“314 (2009)

    Google ScholarĀ 

  17. Nyberg, K., WallĆ©n, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144ā€“162. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_10

    ChapterĀ  Google ScholarĀ 

  18. Stone, J., Gohara, S.: OpenCL a parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66ā€“73 (2010)

    ArticleĀ  Google ScholarĀ 

  19. WallĆ©n, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 261ā€“273. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_20

    ChapterĀ  Google ScholarĀ 

  20. WallƩn, J.: On the differential and linear properties of addition (2003). http://www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A84.pdf

  21. Yao, Y., Zhang, B., Wu, W.: Automatic search for linear trails of the SPECK family. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 158ā€“176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_9

    ChapterĀ  Google ScholarĀ 

Download references

Acknowledgments

This research was partially supported by the Research Fund of the KU Leuven, grant C16/18/004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniƫl Bodden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodden, D. (2018). Linear Cryptanalysis of Reduced-Round Speck with a Heuristic Approach: Automatic Search for Linear Trails. In: Chen, L., Manulis, M., Schneider, S. (eds) Information Security. ISC 2018. Lecture Notes in Computer Science(), vol 11060. Springer, Cham. https://doi.org/10.1007/978-3-319-99136-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99136-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99135-1

  • Online ISBN: 978-3-319-99136-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics