Abstract
Previous research on linear cryptanalysis with Speck has proved that good linear trails and a meaningful distinguisher for variants of Speck can be found. In this paper we use two different linear approximations of modular addition to search for even better linear trails. Also, we have added a heuristic to search for large bias approximations for the state conversion approach. We will explain how the automatic search works and discuss its performance. Finally we illustrate that linear approximations with large bias exist in variants of Speck.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525ā545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27
Ashur, T., Dunkelman, O.: Linear analysis of reduced-round CubeHash. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 462ā478. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_27
Ashur, T., Bodden, D.: Linear cryptanalysis of reduced-round speck. In: Proceedings of the 37th Symposium on Information Theory in the Benelux (2016)
Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546ā570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28
Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-9314-6
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1ā6 (2015)
Cho, J.Y., Pieprzyk, J.: Algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 49ā64. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_4
Cho, J.Y., Pieprzyk, J.: Multiple modular additions and crossword puzzle attack on NLSv2. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 230ā248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1_16
Dobraunig, C., Eichlseder, M., Mendel, F.: Heuristic tool for linear cryptanalysis with applications to CAESAR candidates. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 490ā509. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_20
Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147ā164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9
Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268ā288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14
Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226ā243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_15
Leurent, G.: Construction of differential characteristics in ARX designs application to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 241ā258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_14
Liu, Y., Fu, K., Wang, W., Sun, L., Wang, M.: Linear cryptanalysis of reduced-round SPECK. Inf. Process. Lett. 116(3), 259ā266 (2016)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386ā397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
Munshi, A.: The OpenCL specification. In: 2009 IEEE Hot Chips 21 Symposium (HCS), pp. 1ā314 (2009)
Nyberg, K., WallĆ©n, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144ā162. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_10
Stone, J., Gohara, S.: OpenCL a parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66ā73 (2010)
WallĆ©n, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 261ā273. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_20
WallƩn, J.: On the differential and linear properties of addition (2003). http://www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A84.pdf
Yao, Y., Zhang, B., Wu, W.: Automatic search for linear trails of the SPECK family. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 158ā176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_9
Acknowledgments
This research was partially supported by the Research Fund of the KU Leuven, grant C16/18/004.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bodden, D. (2018). Linear Cryptanalysis of Reduced-Round Speck with a Heuristic Approach: Automatic Search for Linear Trails. In: Chen, L., Manulis, M., Schneider, S. (eds) Information Security. ISC 2018. Lecture Notes in Computer Science(), vol 11060. Springer, Cham. https://doi.org/10.1007/978-3-319-99136-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-99136-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99135-1
Online ISBN: 978-3-319-99136-8
eBook Packages: Computer ScienceComputer Science (R0)