Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Qualitative Spatial Neighborhoods in the Situation Calculus

  • Conference paper
Spatial Cognition IV. Reasoning, Action, Interaction (Spatial Cognition 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3343))

Included in the following conference series:

  • 1596 Accesses

Abstract

We present first ideas on how results about qualitative spatial reasoning can be exploited in reasoning about action and change. Current work concentrates on a line segment based calculus, the dipole calculus and necessary extensions for representing navigational concepts like turn right. We investigate how its conceptual neighborhood structure can be applied in the situation calculus for reasoning qualitatively about relative positions in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bateman, J., Farrar, S.: Modelling models of robot navigation using formal spatial ontology. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 366–389. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Bennett, B., Galton, A.P.: A unifying semantics for time and events. Artificial Intelligence 153(1-2), 13–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burgard, W., Cremers, A.B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artificial Intelligence 114(1-2), 3–55 (1999)

    Article  MATH  Google Scholar 

  4. Cohn, A.G.: Qualitative spatial representation and reasoning techniques. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS, vol. 1303, pp. 1–30. Springer, Heidelberg (1997)

    Google Scholar 

  5. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Davis, E.: Continuous shape transformation and metrics of shape. Fundamenta Informaticae 46, 31–54 (2001)

    MATH  MathSciNet  Google Scholar 

  7. De Giacomo, G., Lésperance, Y., Levesque, H.J.: ConGolog, A concurrent programming language based on situation calculus. Artificial Intelligence 121(1–2), 109–169 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Giacomo, G., Levesque, H.: An incremental interpreter for high-level programs with sensing. In: Levesque, H.J., Pirri, F. (eds.) Logical Foundation for Cognitive Agents: Contributions in Honor of Ray Reiter, pp. 86–102. Springer, Berlin (1999)

    Google Scholar 

  9. Fernyhough, J., Cohn, A.G., Hogg, D.: Constructing qualitative event models automatically from video input. Image and Vision Computing 18, 81–103 (2000)

    Article  Google Scholar 

  10. Ferrein, A., Fritz, C., Lakemeyer, G.: On-line decision-theoretic golog for unpredictable domains. In: Proc. of 4th International Cognitive Robotics Workshop (2004)

    Google Scholar 

  11. Ferrein, A., Fritz, C., Lakemeyer, G.: Extending DTGolog with Options. In: Proc. of the 18th International Joint Conference on Artificial Intelligence (2003)

    Google Scholar 

  12. Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M.G., Travé-Massuyès, L. (eds.) Proceedings of the IMACS Workshop on Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Elsevier, Amsterdam (1991)

    Google Scholar 

  13. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and methods of spatio-temporal reasoning in geographic space, pp. 162–178. Springer, Berlin (1992)

    Google Scholar 

  14. Freksa, C.: Spatial Cognition - An AI Prespective. In: Proceedings of 16th European Conference on AI, ECAI 2004 (2004)

    Google Scholar 

  15. Fritz, C.: Integrating decision-theoretic planning and programming for robot control in highly dynamic domains. Master’s thesis, RWTH Aachen (Knowledge-based Systems Group), Aachen, Germany (2003)

    Google Scholar 

  16. Galton, A.: Space, time, and movement. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 321–352. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  17. Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)

    Google Scholar 

  18. Galton, A.P.: Continuous motion in discrete space. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proc. 7th Internat. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 26–37. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  19. Grosskreutz, H.: Probabilistic projection and belief update in the pGOLOG framework. In: CogRob 2000 at ECAI 2000 (2000)

    Google Scholar 

  20. Grosskreutz, H., Lakemeyer, G.: cc-Golog: Towards more realistic logic-based robot controllers. In: AAAI 2000 (2000)

    Google Scholar 

  21. Grosskreutz, H., Lakemeyer, G.: Turning high-level plans into robot programs in uncertain domains. In: ECAI 2000 (2000)

    Google Scholar 

  22. Grosskreutz, H., Lakemeyer, G.: On-line execution of cc-Golog plans. In: IJCAI (2001)

    Google Scholar 

  23. Harzarika, S.M., Cohn, A.G.: Qualitative spatio-temporal continuity. In: Montello, D.R. (ed.) COSIT 2001, vol. 2205, pp. 92–107. Springer, Heidelberg (2001)

    Google Scholar 

  24. Isli, A., Cohn, A.G.: An algebra for cyclic ordering of 2d orientations. In: AAAI/IAAI, pp. 643–649 (1998)

    Google Scholar 

  25. Kuipers, B.J.: Representing knowledge of large-scale space. Technical Report 418 (1977)

    Google Scholar 

  26. Ladkin, P., Maddux, R.: On binary constraint problems. Journal of the Association for Computing Machinery 41(3), 435–469 (1994)

    MATH  MathSciNet  Google Scholar 

  27. Levesque, H., Pirri, F., Reiter, R.: Foundations for the situation calculus. Linköping Electronic Articles in Computer and Information Science 3 (1998)

    Google Scholar 

  28. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming 31(1-3), 59–83 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. McCarthy, J.: Situations, actions and causal laws. Technical report, Stanford University (1963)

    Google Scholar 

  30. Moratz, R., Tenbrink, T., Bateman, J., Fischer, K.: Spatial knowledge representation for human-robot interaction. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. Springer, Berlin (2002)

    Google Scholar 

  31. Moratz, R., Nebel, B., Freksa, C.: Qualitative spatial reasoning about relative position. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 385–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  32. Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: Proceedings of ECAI 2000, pp. 234–238 (2000)

    Google Scholar 

  33. Moratz, R., Wallgrün, J.O.: Propagation of distance and orientation intervals. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3245–3250 (2003)

    Google Scholar 

  34. Mukerjee, A., Joe, G.: A qualitative model for space. In: Proc. of AAAI 1990, Boston, MA, pp. 721–727 (1990)

    Google Scholar 

  35. Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) KR 1998: Principles of Knowledge Representation and Reasoning, pp. 131–141. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  36. Pinto, J.: Temporal Reasoning in the Situation Calculus. PhD thesis, Department of Computer Science, University of Toronto (1994)

    Google Scholar 

  37. Randell, D.A., Cohn, A.G.: Modelling topological and metrical properties of physical processes. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning (KR 1989), pp. 357–368. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  38. Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, pp. 165–176. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  39. Reiter, R.: Knowledge in Action. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  40. Renz, J.: A spatial odyssey of the interval algebra: 1. directed intervals. In: IJCAI, pp. 51–56 (2001)

    Google Scholar 

  41. Röfer, T.: Route navigation using motion analysis. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 21–36. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  42. Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)

    Google Scholar 

  43. Soutchanski, M.: An on-line decision-theoretic golog interpreter. In: IJCAI, pp. 19–26 (2001)

    Google Scholar 

  44. Tenbrink, T., Fischer, K., Moratz, R.: Spatial strategies in linguistic human-robot communication. In: Freksa, C. (ed.) KI-Journal: Special Issue on Spatial Cognition. arenDTaP Verlag (2002)

    Google Scholar 

  45. Wang, R.F., Spelke, E.S.: Updating egocentric representations in human navigation. Cognition (2000)

    Google Scholar 

  46. Wang, R.F., Spelke, E.S.: Human spatial representation: Insights from animals. Trends in Cognitive Sciences 6(9), 376–382 (2002)

    Article  Google Scholar 

  47. Wolter, D., Latecki, L.J.: Shape matching for robot mapping. In: Zhang, C., Guesgen, H.W., Yeap, W.K. (eds.) Proceedings of 8th Pacific Rim International Conference on Artificial Intelligence, Auckland, New Zealand (August 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dylla, F., Moratz, R. (2005). Exploiting Qualitative Spatial Neighborhoods in the Situation Calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds) Spatial Cognition IV. Reasoning, Action, Interaction. Spatial Cognition 2004. Lecture Notes in Computer Science(), vol 3343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32255-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32255-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25048-7

  • Online ISBN: 978-3-540-32255-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics