Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2799))

Abstract

This work describes generalized structures to design 1-of-M QDI (Quasi Delay-Insensitive) asynchronous adders. Those structures allow to design from simple ripple-carry adders to faster parallel-prefix adders. The proposed method is fully automated and integrated in TAST (TIMA Asynchronous Synthesis Tool) tools suite. This paper also demonstrates that the most widely used dual-rail encoding (binary representation in QDI circuits) is not the best solution for numbers’ representation in asynchronous circuits. In fact, according to the domain of values to be represented increasing the radix leads to parallel-prefix adders with lower area, delay and power consumption. Hence, this work enables the designer to optimize his/her design by choosing the appropriate 1-of-M number representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Udding, J.T.: A formal model for defining and classifying delay-insensitive circuits and systems. Distributed Computing 1, 197–204 (1986)

    Article  Google Scholar 

  2. Stevens, K., et al.: An asynchronous instruction length decoder. IEEE JSSC 36(2), 217–228 (2001)

    Google Scholar 

  3. Coates, W., et al.: FLETzero: an asynchronous switching experiment. In: Proceedings of ASYNC, pp. 173–182 (2001)

    Google Scholar 

  4. Woods, J., Day, P., Furber, S., Garside, J., Paver, N., Temple, S.: AMULET1: an asynchronous ARM microprocessor. IEEE Transaction on Computers 46(4), 385–398 (1997)

    Article  Google Scholar 

  5. Renaudin, M.: Asynchronous circuits and systems: a promising design alternative. Journal of microelectronic engineering 54, 133–149 (2000)

    Article  Google Scholar 

  6. Dinh Duc, A.V., et al.: TAST CAD Tools. In: 2nd Asynchronous Circuit Design Workshop, Munich-Germany (January 28–29, 2002)

    Google Scholar 

  7. Renaudin, M., Vivet, P., Robin, F.: A Design Framework for Asynchronous/Synchronous Circuits Based on CHP to HDL Translation. In: International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), Barcelona, Spain, April 19– 21, pp. 135–144 (1999)

    Google Scholar 

  8. Martin, A.J.: Synthesis of Asynchronous VLSI Circuits. Internal Report, Caltech-CS_TR- 93–28, California Institute of Technology, Pasadena (1993)

    Google Scholar 

  9. Rigaud, J.-B., Renaudin, M.: Modeling and design/synthesis of arbitration problems. In: AINT 2000, Proceedings of the Asynchronous Interfaces: Tools, Techniques and Implementations Work-shop, TU Delft, The Netherlands, July 19–20, pp. 121–128 (2000)

    Google Scholar 

  10. Rigaud, J.-B., Quartana, J., Fesquet, L., Renaudin, M.: High-Level Modeling and Design of Asynchronous Arbiters for On-Chip Communication Systems. In: Design Automation and Test Conference (DATE), Paris, France (March 4–7, 2002)

    Google Scholar 

  11. Sklansky, J.: Conditional-sum addition logic. IRE Trans. Electronic Computers 9(2), 226–231 (1960)

    Article  MathSciNet  Google Scholar 

  12. Brent, R., Kung, H.: A Regular Layout for Parallel Adders. IEEE Transactions on Computers C-31(3), 260–264 (1982)

    Article  MathSciNet  Google Scholar 

  13. Kogge, P., Stone, H.: A Parallel Algorithm for the Efficient Solution of General Class of Recurrence Equation. IEEE Trans. on Computers 22(8), 783–791 (1973)

    Article  MathSciNet  Google Scholar 

  14. Sparsø, J., Staunstrup, J., Dantzer-Sørensen, M.: Design of delay insensitive circuits using multi-ring structures. In: Proceedings of EURO–DAC, Germany, pp. 15–20 (1992)

    Google Scholar 

  15. David, I., Ginosar, R., Yoeli, M.: An efficient implementation of Boolean functions as selftimed circuits. IEEE Transactions on Computers 41(1), 2–11 (1992)

    Article  Google Scholar 

  16. Kondratyev, A., Lwin, K.: Design of asynchronous circuits using synchronous CAD tools. IEEE Design and Test of Computers 19(4), 107–117 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fragoso, J.L., Sicard, G., Renaudin, M. (2003). Power/Area Tradeoffs in 1-of-M Parallel-Prefix Asynchronous Adders. In: Chico, J.J., Macii, E. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2003. Lecture Notes in Computer Science, vol 2799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39762-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39762-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20074-1

  • Online ISBN: 978-3-540-39762-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics