Abstract
The discovery of relationships between concepts is a crucial point in ontology learning (OL). In most cases, OL is achieved from a collection of domain-specific texts, describing the concepts of the domain and their relationships. A natural way to represent the description associated to a particular text is to use a structured term (or tree). We present a method for learning transformation rules, rewriting natural language texts into trees, where the input examples are couples (text, tree). The learning process produces an ordered set of rules such that, applying these rules to a text gives the corresponding tree.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aitken, J.S.: Learning Information Extraction Rules: An Inductive Logic Programming approach. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 355–359 (2002), http://citeseer.ist.psu.edu/586553.html
Boström, H.: Induction of recursive transfer rules. In: Cussens, J., Džeroski, S. (eds.) Learning Language in Logic. LNCS (LNAI), vol. 1925, pp. 237–246. Springer, Heidelberg (2000)
Brill, E.: Automatic grammar induction and parsing free text: A transformation-based approach. In: Meeting of the Association for Computational Linguistics, pp. 259–265 (1993)
Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (1997) (release October, 1rst 2002), available on: http://www.grappa.univ-lille3.fr/tata
Cohen, W.W.: Learning to classify English text with ILP methods. In: De Raedt, L. (ed.) ILP95, pp. 3–24. DEPTCW (1995)
Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the Fourteenth International Conference on Computational Linguistics, pp. 539–545, Nantes, France (July 1992)
Junker, M., Sintek, M., Rinck, M.: Learning for text categorization and information extraction with ILP. In: Cussens, J. (ed.) Proceedings of the 1st Workshop on Learning Language in Logic, pp. 84–93, Bled, Slovenia (1999)
Mooney, R.J.: Inductive logic programming for natural language processing. In: Inductive Logic Programming. LNCS, vol. 1314, pp. 3–24. Springer, Heidelberg (1997)
Maedche, A., Pekar, V., Staab, S.: Ontology learning part one - on discovering taxonomic relations from the web. In: Zhong, N. (ed.) Web Intelligence, Springer, Heidelberg (2002)
Shamsfard, M., Barforoush, A.: The state of the art in ontology learning: a framework for comparison. Knowl. Eng. Rev. 18(4), 293–316 (2003)
Shamsfard, M., Barforoush, A.: Learning ontologies from natural language texts. Int. J. Hum.-Comput. Stud. 60(1), 17–63 (2004)
Sanchez, D., Moreno, A.: Discovering non-taxonomic relations from the Web. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, Springer, Heidelberg (2006)
TC Projetc TreeTagger: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
Yamaguchi, T.: Acquiring conceptual relationships from domain-specific texts. In: Proceedings of the Second Workshop on Ontology Learning OL 2001, Seattle, USA (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cleuziou, G., Martin, L., Vrain, C. (2007). Structuring Natural Language Data by Learning Rewriting Rules. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2006. Lecture Notes in Computer Science(), vol 4455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73847-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-73847-3_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73846-6
Online ISBN: 978-3-540-73847-3
eBook Packages: Computer ScienceComputer Science (R0)