Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Structuring Natural Language Data by Learning Rewriting Rules

  • Conference paper
Inductive Logic Programming (ILP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4455))

Included in the following conference series:

  • 500 Accesses

Abstract

The discovery of relationships between concepts is a crucial point in ontology learning (OL). In most cases, OL is achieved from a collection of domain-specific texts, describing the concepts of the domain and their relationships. A natural way to represent the description associated to a particular text is to use a structured term (or tree). We present a method for learning transformation rules, rewriting natural language texts into trees, where the input examples are couples (text, tree). The learning process produces an ordered set of rules such that, applying these rules to a text gives the corresponding tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aitken, J.S.: Learning Information Extraction Rules: An Inductive Logic Programming approach. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 355–359 (2002), http://citeseer.ist.psu.edu/586553.html

  2. Boström, H.: Induction of recursive transfer rules. In: Cussens, J., Džeroski, S. (eds.) Learning Language in Logic. LNCS (LNAI), vol. 1925, pp. 237–246. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Brill, E.: Automatic grammar induction and parsing free text: A transformation-based approach. In: Meeting of the Association for Computational Linguistics, pp. 259–265 (1993)

    Google Scholar 

  4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (1997) (release October, 1rst 2002), available on: http://www.grappa.univ-lille3.fr/tata

  5. Cohen, W.W.: Learning to classify English text with ILP methods. In: De Raedt, L. (ed.) ILP95, pp. 3–24. DEPTCW (1995)

    Google Scholar 

  6. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the Fourteenth International Conference on Computational Linguistics, pp. 539–545, Nantes, France (July 1992)

    Google Scholar 

  7. Junker, M., Sintek, M., Rinck, M.: Learning for text categorization and information extraction with ILP. In: Cussens, J. (ed.) Proceedings of the 1st Workshop on Learning Language in Logic, pp. 84–93, Bled, Slovenia (1999)

    Google Scholar 

  8. Mooney, R.J.: Inductive logic programming for natural language processing. In: Inductive Logic Programming. LNCS, vol. 1314, pp. 3–24. Springer, Heidelberg (1997)

    Google Scholar 

  9. Maedche, A., Pekar, V., Staab, S.: Ontology learning part one - on discovering taxonomic relations from the web. In: Zhong, N. (ed.) Web Intelligence, Springer, Heidelberg (2002)

    Google Scholar 

  10. Shamsfard, M., Barforoush, A.: The state of the art in ontology learning: a framework for comparison. Knowl. Eng. Rev. 18(4), 293–316 (2003)

    Article  Google Scholar 

  11. Shamsfard, M., Barforoush, A.: Learning ontologies from natural language texts. Int. J. Hum.-Comput. Stud. 60(1), 17–63 (2004)

    Article  Google Scholar 

  12. Sanchez, D., Moreno, A.: Discovering non-taxonomic relations from the Web. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, Springer, Heidelberg (2006)

    Google Scholar 

  13. TC Projetc TreeTagger: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html

  14. Yamaguchi, T.: Acquiring conceptual relationships from domain-specific texts. In: Proceedings of the Second Workshop on Ontology Learning OL 2001, Seattle, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen Muggleton Ramon Otero Alireza Tamaddoni-Nezhad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cleuziou, G., Martin, L., Vrain, C. (2007). Structuring Natural Language Data by Learning Rewriting Rules. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2006. Lecture Notes in Computer Science(), vol 4455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73847-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73847-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73846-6

  • Online ISBN: 978-3-540-73847-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics