Abstract
We prove new structural properties for tree-decompositions of planar graphs that we use to improve upon the runtime of tree-decomposition based dynamic programming approaches for several NP-hard planar graph problems. We give for example the fastest algorithm for Planar Dominating Set of runtime 3tw ·n O(1), when we take the treewidth tw as the measure for the exponential worst case behavior. We also introduce a tree-decomposition based approach to solve non-local problems efficiently, such as Planar Hamiltonian Cycle in runtime 6tw ·n O(1). From any input tree-decomposition, we compute in time O(nm) a tree-decomposition with geometric properties, which decomposes the plane into disks, and where the graph separators form Jordan curves in the plane.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)
Alber, J., Bodlaender, H.L., Fernau, H., Niedermeier, R.: Fixed parameter algorithms for planar dominating set and related problems. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 97–110. Springer, Heidelberg (2000)
Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for domination-like problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 613–627. Springer, Heidelberg (2002)
Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, pp. 33–41. ACM Press, New York (1998)
Bernstein, P.A., Goodman, N.: Power of natural semijoins. SIAM Journal on Computing 10, 751–771 (1981)
Bodlaender, H.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet. 11, 1–21 (1993)
Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics 6, 181–188 (1993)
Bouchitté, V., Mazoit, F., Todinca, I.: Chordal embeddings of planar graphs. Discrete Mathematics 273, 85–102 (2003)
Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS Journal on Computing 15, 233–248 (2003)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. Journal of the ACM 52, 866–893 (2005)
Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)
Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)
Dorn, F.: How to use planarity efficiently: new tree-decomposition based algorithms (manuscript, 2007), http://www.ii.uib.no/~frederic/PlanDomSet.pdf
Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast subexponential algorithm for non-local problems on graphs of bounded genus. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 172–183. Springer, Heidelberg (2006)
Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg (2005)
Dorn, F., Telle, J.A.: Two birds with one stone: the best of branchwidth and treewidth with one algorithm. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 386–397. Springer, Heidelberg (2006)
Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3, 1–27 (1999)
Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. In: SODA 2003. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, pp. 168–177. ACM Press, New York (2003)
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory Series B 16, 47–56 (1974)
Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306, 297–317 (2006)
Ho, C.W., Lee, R.C.T.: Counting clique trees and computing perfect elimination schemes in parallel. Inf. Process. Lett. 31, 61–68 (1989)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)
Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. Journal of Computer and System Science 32, 265–279 (1986)
Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Applied Mathematics 79, 171–188 (1997)
Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3, 119–130 (1961)
Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)
Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5, 146–160 (1976)
Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing 13, 566–579 (1984)
Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math 10, 529–550 (1997)
van Leeuwen, J.: Graph algorithms. MIT Press, Cambridge, MA, USA (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dorn, F. (2007). How to Use Planarity Efficiently: New Tree-Decomposition Based Algorithms. In: Brandstädt, A., Kratsch, D., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2007. Lecture Notes in Computer Science, vol 4769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74839-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-74839-7_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74838-0
Online ISBN: 978-3-540-74839-7
eBook Packages: Computer ScienceComputer Science (R0)