Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intelligent Farmer Agent for Multi-agent Ecological Simulations Optimization

  • Conference paper
Progress in Artificial Intelligence (EPIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4874))

Included in the following conference series:

  • 1487 Accesses

Abstract

This paper presents the development of a bivalve farmer agent interacting with a realistic ecological simulation system. The purpose of the farmer agent is to determine the best combinations of bivalve seeding areas in a large region, maximizing the production without exceeding the total allowed seeding area. A system based on simulated annealing, tabu search, genetic algorithms and reinforcement learning, was developed to minimize the number of iterations required to unravel a semi-optimum solution by using customizable tactics. The farmer agent is part of a multi-agent system where several agents, representing human interaction with the coastal ecosystems, communicate with a realistic simulator developed especially for aquatic ecological simulations. The experiments performed revealed promising results in the field of optimization techniques and multi-agent systems applied to ecological simulations. The results obtained open many other possible uses of the simulation architecture with applications in industrial and ecological management problems, towards sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duarte, P., Meneses, R., Hawkins, A.J.S., Zhu, M., Fang, J., Grant, J.: Mathematical modelling to assess the carrying capacity for multi-species culture within coastal waters. Ecological Modelling 168, 109–143 (2003)

    Article  Google Scholar 

  2. Pereira, A., Duarte, P., Reis, L.P.: ECOLANG – A Communication Language for Simulations of Complex Ecological Systems. In: Merkuryev, Y., Zobel, R., Kerckhoffs, E. (eds.) Proceedings of the 19th European Conference on Modelling and Simulation, Riga, pp. 493–500 (2005)

    Google Scholar 

  3. Pereira, A., Duarte, P., Reis, L.P.: An Integrated Ecological Modelling and Decision Support Methodology. In: Zelinka, I., Oplatková, Z., Orsoni, A. (eds.) 21st European Conference on Modelling and Simulation, ECMS, Prague, pp. 497–502 (2007)

    Google Scholar 

  4. Russel, S., Norvig, P.: Artificial Intelligence: A modern approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  5. Weiss, G.: Multiagent Systems. MIT Press, Cambridge (2000)

    Google Scholar 

  6. Wooldridge, M.: An Introduction to Multi-Agent Systems. John Wiley & Sons, Ltd., Chichester (2002)

    Google Scholar 

  7. Pereira, A., Duarte, P., Reis, L.P.: Agent-Based Simulation of Ecological Models. In: Coelho, H., Espinasse, B. (eds.) Proceedings of the 5th Workshop on Agent-Based Simulation, Lisbon, pp. 135–140 (2004)

    Google Scholar 

  8. Jørgensen, S.E., Bendoricchio, G.: Fundamentals of Ecological Modelling. Elsevier, Amsterdam (2001)

    Google Scholar 

  9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimizing by Simulated Annealing. Science 220(4598) (1983)

    Google Scholar 

  10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  11. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1999)

    Google Scholar 

  12. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  13. Dzeroski, S.: Applications of symbolic machine learning to ecological modelling. Ecological Modelling 146 (2001)

    Google Scholar 

  14. Mishra, N., Prakash, M.K., Tiwari, R., Shankar, F., Chan, T.S.: Hybrid tabu-simulated annealing based approach to solve multi-constraint product mix decision problem. Expert Systems with Applications 29 (2005)

    Google Scholar 

  15. Youssef, H., Sait, S.M., Adiche, H.: Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Engineering Applications of Artificial Intelligence 14 (2001)

    Google Scholar 

  16. Amirjanov, A.: The development of a changing range genetic algorithm. Computer Methods in Applied Mechanics and Engineering 195 (2006)

    Google Scholar 

  17. Sait, S.M., El-Maleh, A.H., Al-Abaji, R.H.: Evolutionary algorithms for VLSI multi-objective netlist partitioning. Engineering Applications of Artificial Intelligence 19 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Neves Manuel Filipe Santos José Manuel Machado

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cruz, F., Pereira, A., Valente, P., Duarte, P., Reis, L.P. (2007). Intelligent Farmer Agent for Multi-agent Ecological Simulations Optimization. In: Neves, J., Santos, M.F., Machado, J.M. (eds) Progress in Artificial Intelligence. EPIA 2007. Lecture Notes in Computer Science(), vol 4874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77002-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77002-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77000-8

  • Online ISBN: 978-3-540-77002-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics