Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Strong Positive Reducibilities

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5532))

Abstract

The need of formalizing a satisfactory notion of relative computability of partial functions leads to enumeration reducibility, which can be viewed as computing with nondeterministic Turing machines using positive information. This paper is dedicated to certain reducibilities that are stronger than enumeration reducibility, with emphasis given to s-reducibility,which appears often in computability theory and applications. We review some of the most notable properties of s-reducibility, together with the main differences distinguishing the s-degrees from the e-degrees, both at the global and local level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Affatato, M.L., Kent, T.F., Sorbi, A.: Undecidability of local structures of s-degrees and Q-degrees. Tbilisi Mathematical Journal 1, 15–32 (2008)

    MATH  MathSciNet  Google Scholar 

  2. Arslanov, M.M.: On a class of hypersimple incomplete sets. Mat. Zametki 38, 872–874, 984–985 (1985) (English translation)

    MathSciNet  Google Scholar 

  3. Belegradek, O.: On algebraically closed groups. Algebra i Logika 13(3), 813–816 (1974)

    MathSciNet  Google Scholar 

  4. Calhoun, W.C., Slaman, T.A.: The \(\Pi^0_2\) e-degrees are not dense. J. Symbolic Logic 61, 1364–1379 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casalegno, P.: On the T-degrees of partial functions. JSL 50, 580–588 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ 2 sets are dense. J. Symbolic Logic 49, 503–513 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cooper, S.B.: Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Ambos-Spies, K., Müller, G., Sacks, G.E. (eds.) Recursion Theory Week, Oberwolfach 1989. Lecture Notes in Mathematics, vol. 1432, pp. 57–110. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  8. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC Mathematics, Boca Raton/London (2003)

    Google Scholar 

  9. Cooper, S.B., Copestake, C.S.: Properly Σ 2 enumeration degrees. Z. Math. Logik Grundlag. Math. 34, 491–522 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis, M.: Computability and Unsolvability. Dover, New York (1982)

    MATH  Google Scholar 

  11. Downey, R.G., Laforte, G., Nies, A.: Computably enumerable sets and quasi-reducibility. Ann. Pure Appl. Logic 95, 1–35 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischer, P., Ambos-Spies, K.: Q-degrees of r.e. sets. J. Symbolic Logic 52(1), 317 (1985)

    Google Scholar 

  13. Gill III, J.T., Morris, P.H.: On subcreative sets and S-reducibility. J. Symbolic Logic 39(4), 669–677 (1974)

    Article  MathSciNet  Google Scholar 

  14. Gutteridge, L.: Some Results on Enumeration Reducibility. PhD thesis, Simon Fraser University (1971)

    Google Scholar 

  15. Harris, C.M.: Good \(\Sigma^0_2\) singleton degrees and density (to appear)

    Google Scholar 

  16. Herrmann, E.: The undecidability of the elementary theory of the lattice of recursively enumerable sets. In: Frege conference, 1984, Schwerin, pp. 66–72. Akademie-Verlag, Berlin (1984)

    Google Scholar 

  17. Jockusch Jr., C.G.: Semirecursive sets and positive reducibility. Trans. Amer. Math. Soc. 131, 420–436 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kent, T.F.: s-degrees within e-degrees. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 579–587. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Lachlan, A.H., Shore, R.A.: The n-rea enumeration degrees are dense. Arch. Math. Logic 31, 277–285 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Marsibilio, D., Sorbi, A.: Global properties of strong enumeration reducibilities (to appear)

    Google Scholar 

  21. McEvoy, K.: The Structure of the Enumeration Degrees. PhD thesis, School of Mathematics, University of Leeds (1984)

    Google Scholar 

  22. McEvoy, K.: Jumps of quasi–minimal enumeration degrees. J. Symbolic Logic 50, 839–848 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  23. Myhill, J.: A note on degrees of partial functions. Proc. Amer. Math. Soc. 12, 519–521 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nies, A.: A uniformity of degree structures. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory, pp. 261–276. Marcel Dekker, New York (1997)

    Google Scholar 

  25. Omanadze, R.S., Sorbi, A.: Strong enumeration reducibilities. Arch. Math. Logic 45(7), 869–912 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Omanadze, R.S., Sorbi, A.: A characterization of the \(\Delta^0_2\) hyperhyperimmune sets. J. Symbolic Logic 73(4), 1407–1415 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Omanadze, R.S., Sorbi, A.: Immunity properties of s-degrees (to appear)

    Google Scholar 

  28. Polyakov, E.A., Rozinas, M.G.: Enumeration reducibilities. Siberian Math. J. 18(4), 594–599 (1977)

    Article  Google Scholar 

  29. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  30. Rozinas, M.G.: Partial degrees of immune and hyperimmune sets. Siberian Math. J. 19, 613–616 (1978)

    Article  MathSciNet  Google Scholar 

  31. Sasso, L.P.: Degrees of Unsolvability of Partial Functions. PhD thesis, University of California, Berkeley (1971)

    Google Scholar 

  32. Sasso, L.P.: A survey of partial degrees. J. Symbolic Logic 40, 130–140 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  33. Slaman, T., Woodin, W.: Definability in the enumeration degrees. Arch. Math. Logic 36, 225–267 (1997)

    Article  MathSciNet  Google Scholar 

  34. Solov’ev, V.D.: Q-reducibility and hyperhypersimple sets. Veroyatn. Metod. i Kibern. 10-11, 121–128 (1974)

    Google Scholar 

  35. Sorbi, A.: Sets of generators and automorphism bases for the enumeration degrees. Ann. Pure Appl. Logic 94(3), 263–272 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Turing, A.M.: Systems of logic based on ordinals. Proc. London Math. Soc. 45, 161–228 (1939)

    Article  MATH  Google Scholar 

  37. Watson, P.: On restricted forms of enumeration reducibility. Ann. Pure Appl. Logic 49, 75–96 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zacharov, S.D.: e- and s- degrees. Algebra and Logic 23, 273–281 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sorbi, A. (2009). Strong Positive Reducibilities. In: Chen, J., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2009. Lecture Notes in Computer Science, vol 5532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02017-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02017-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02016-2

  • Online ISBN: 978-3-642-02017-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics