Abstract
Bi-intuitionistic logic is the extension of intuitionistic logic with exclusion, a connective dual to implication. Cut-elimination in bi-intuitionistic logic is complicated due to the interaction between these two connectives, and various extended sequent calculi, including a display calculus, have been proposed to address this problem.
In this paper, we present a new extended sequent calculus DBiInt for bi-intuitionistic logic which uses nested sequents and “deep inference”, i.e., inference rules can be applied at any level in the nested sequent. We show that DBiInt can simulate our previous “shallow” sequent calculus LBiInt. In particular, we show that deep inference can simulate the residuation rules in the display-like shallow calculus LBiInt. We also consider proof search and give a simple restriction of DBiInt which allows terminating proof search. Thus our work is another step towards addressing the broader problem of proof search in display logic.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Areces, C., Bernardi, R.: Analyzing the core of categorial grammar. Journal of Logic, Language, and Information 13(2), 121–137 (2004)
Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., et al. (eds.) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications (2006)
Crolard, T.: A formulae-as-types interpretation of Subtractive Logic. Journal of Logic and Computation 14(4), 529–570 (2004)
Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic 57(3), 795–807 (1992)
Goré, R.: Substructural logics on display. LJIGPL 6(3), 451–504 (1998)
Goré, R., Postniece, L.: Combining derivations and refutations for cut-free completeness in bi-intuitionistic logic. Journal of Logic and Computation. To appear, Advance Access, http://logcom.oxfordjournals.org/cgi/content/abstract/exn067
Goré, R., Postniece, L., Tiu, A.: Taming displayed tense logics using nested sequents with deep inference. To appear in Proceedings of TABLEAUX 2009 (2009)
Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In: Advances in Modal Logic, vol. 7, pp. 43–66. College Publications (2008)
Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1) (2007)
Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996)
Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–135 (1994)
Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-intuitionistic propositional logic with labelled sequents. To appear in Proceedings of TABLEAUX 2009 (2009)
Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. Dissertationes Mathematicae 168 (1980)
Tiu, A.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 242–256. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Postniece, L. (2009). Deep Inference in Bi-intuitionistic Logic. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2009. Lecture Notes in Computer Science(), vol 5514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02261-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-02261-6_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02260-9
Online ISBN: 978-3-642-02261-6
eBook Packages: Computer ScienceComputer Science (R0)