Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Inference in Bi-intuitionistic Logic

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5514))

Abstract

Bi-intuitionistic logic is the extension of intuitionistic logic with exclusion, a connective dual to implication. Cut-elimination in bi-intuitionistic logic is complicated due to the interaction between these two connectives, and various extended sequent calculi, including a display calculus, have been proposed to address this problem.

In this paper, we present a new extended sequent calculus DBiInt for bi-intuitionistic logic which uses nested sequents and “deep inference”, i.e., inference rules can be applied at any level in the nested sequent. We show that DBiInt can simulate our previous “shallow” sequent calculus LBiInt. In particular, we show that deep inference can simulate the residuation rules in the display-like shallow calculus LBiInt. We also consider proof search and give a simple restriction of DBiInt which allows terminating proof search. Thus our work is another step towards addressing the broader problem of proof search in display logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Areces, C., Bernardi, R.: Analyzing the core of categorial grammar. Journal of Logic, Language, and Information 13(2), 121–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., et al. (eds.) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications (2006)

    Google Scholar 

  3. Crolard, T.: A formulae-as-types interpretation of Subtractive Logic. Journal of Logic and Computation 14(4), 529–570 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic 57(3), 795–807 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goré, R.: Substructural logics on display. LJIGPL 6(3), 451–504 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Goré, R., Postniece, L.: Combining derivations and refutations for cut-free completeness in bi-intuitionistic logic. Journal of Logic and Computation. To appear, Advance Access, http://logcom.oxfordjournals.org/cgi/content/abstract/exn067

  7. Goré, R., Postniece, L., Tiu, A.: Taming displayed tense logics using nested sequents with deep inference. To appear in Proceedings of TABLEAUX 2009 (2009)

    Google Scholar 

  8. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In: Advances in Modal Logic, vol. 7, pp. 43–66. College Publications (2008)

    Google Scholar 

  9. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1) (2007)

    Google Scholar 

  10. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–135 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-intuitionistic propositional logic with labelled sequents. To appear in Proceedings of TABLEAUX 2009 (2009)

    Google Scholar 

  13. Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. Dissertationes Mathematicae 168 (1980)

    Google Scholar 

  14. Tiu, A.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 242–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Postniece, L. (2009). Deep Inference in Bi-intuitionistic Logic. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2009. Lecture Notes in Computer Science(), vol 5514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02261-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02261-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02260-9

  • Online ISBN: 978-3-642-02261-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics