Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Variable Genetic Operator Search for the Molecular Docking Problem

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6023))

  • 787 Accesses

Abstract

The aim of this work is to present a new hybrid algorithm for the Molecular Docking problem: Variable Genetic Operator Search (VGOS). The proposed method combines an Evolutionary Algorithm with Variable Neighborhood Search. Experimental results show that the algorithm is able to achieve good results, in terms of energy optimization and RMSD values for several molecules when compared with previous approaches. In addition, when hybridized with the L-BFGS local search method it attains very competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Diller, R.M., Verlind, L.M.J.: A critical evaluation of several global optimization algorithms for the purpose of molecular docking. J. Comput. Chem. 20, 1740–1751 (1999)

    Article  Google Scholar 

  2. McConkey, B., Sobelove, V., Edlman, M.: The performance of current methods in ligand-protein docking. Current Science 83, 845–855 (2002)

    Google Scholar 

  3. Oduguawa, A., Tiwari, A., Fiorentino, S., Roy, R.: Multi-objective optimisation of the protein-ligand docking problem in drug discovery. In: ACM, GECCO 2006 (2006)

    Google Scholar 

  4. Maldenovic, N., Hansen, P.: Variable neighborhood search. Computers in Operations Reasearch 24, 1097–1100 (1997)

    Article  Google Scholar 

  5. Dixon, J.S.: Flexible docking of ligands to receptor sites using genetic algorithms. In: Proc. of the 9th European Symposium on Structure-Activity Relationships, Leiden, The Netherlands, pp. 412–413. ESCOM Science Publishers (1993)

    Google Scholar 

  6. Thomsen, R.: Protein-ligand docking with evolutionary algorithms. In: Fogel, G.B., Corne, D.W., Pan, Y. (eds.) Computational Intelligence in Bioinformatics, pp. 169–195. Wiley-IEEE Press (2008)

    Google Scholar 

  7. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.: Towards the development of univeral, fast and highly accurate docking/scoring methods: a long way to go. British Journal of Pharmacology 153, 1–20 (2007)

    Google Scholar 

  8. Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)

    Article  Google Scholar 

  9. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarkian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  10. Tavares, J., Tantar, A.A., Melab, N., Talbi, E.G.: The influence of mutation on protein-ligand docking optimization: a locality analysis. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 589–598. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Tavares, J., Melab, N., Talbi, E.G.: An empirical study on the influence of genetic operators for molecular docking optimization. Technical Report RR-6660, INRIA Lille - Nord Europe research Centre (2008)

    Google Scholar 

  12. Tavares, J., Mesmoudi, S., Talbi, E.G.: On the efficiency of local search methods for the molecular docking problem. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 104–115. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing (Spring 2003)

    Google Scholar 

  14. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evolutionary Computation 12, 273–302 (2004)

    Article  Google Scholar 

  15. Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)

    Article  Google Scholar 

  16. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. Journal of Computational Chemistry 19, 1639–1662 (1998)

    Article  Google Scholar 

  17. Liu, D.C., Nocedal, J.: On the limited memory method for large scale optimization. Mathematical Programming B, 503–528 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mesmoudi, S., Tavares, J., Jourdan, L., Talbi, EG. (2010). Variable Genetic Operator Search for the Molecular Docking Problem. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2010. Lecture Notes in Computer Science, vol 6023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12211-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12211-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12210-1

  • Online ISBN: 978-3-642-12211-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics