Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Polyhedral and Algorithmic Properties of Quantified Linear Programs

  • Conference paper
Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Included in the following conference series:

  • 1778 Accesses

Abstract

Quantified linear programs (QLPs) are linear programs with variables being either existentially or universally quantified. The integer variant is PSPACE-complete, and the problem is similar to games like chess, where an existential and a universal player have to play a two-person-zero-sum game. At the same time, a QLP with n variables is a variant of a linear program living in \({\hbox{\rm I\kern - 0.15em R}}^n\), and it has strong similarities with multistage-stochastic programs with variable right-hand side. We show for the continuous case that the union of all winning policies of the existential player forms a polytope in \({\hbox{\rm I\kern - 0.15em R}}^n\), that its vertices are games of so called extremal strategies, and that these vertices can be encoded with polynomially many bits. The latter allows the conclusion that solving a QLP is in PSPACE. The hardness of the problem stays unknown.

Research partially supported by German Research Foundation (DFG) funded SFB 805.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altenstedt, F.: Memory consumption versus computational time in nested benders decomposition for stochastic linear programming. Tech. Rep., Chalmers University, Goteborg (2003)

    Google Scholar 

  2. Bellmann, R.: Dynamic programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  3. Birge, J.R., Louveaux, F.: Intro. to Stochastic Programming. Springer, Heidelberg (1997)

    Google Scholar 

  4. Donninger, C., Kure, A., Lorenz, U.: Parallel brutus: The first distributed, fpga accelarated chess program. In: Proc. of 18th International Parallel & Distributed Processing Symposium (IPDPS), Santa Fe. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  5. Dyer, M.E., Stougie, L.: Computational complexity of stochastic programming problems. Math. Program. 106(3), 423–432 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eisenbrand, F., Rothvoß, T.: A ptas for static priority real-time scheduling with resource augmentation. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 246–257. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Engell, S., Märkert, A.M., Sand, G., Schultz, R.: Aggregated scheduling of a multiproduct batch plant by two-stage stochastic integer programming. Optimiz. and Engineering 5 (2004)

    Google Scholar 

  8. Grothklags, S., Lorenz, U., Monien, B.: From state-of-the-art static fleet assignment to flexible stochastic planning of the future. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 140–165. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  10. Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS (1997)

    Google Scholar 

  11. Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM Jour. of Opt., 479–502 (2001)

    Google Scholar 

  12. König, F.G., Lübbecke, M.E., Möhring, R.H., Schäfer, G., Spenke, I.: Solutions to real-world instances of pspace-complete stacking. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 729–740. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Liebchen, C., Lübbecke, M.E., Möhring, R.H., Stiller, S.: The concept of recoverable robustness, linear programming recovery, and railway applications. In: Robust and online large-scale optimization, pp. 1–27 (2009)

    Google Scholar 

  14. Megow, N., Vredeveld, T.: Approximation results for preemtive stochastic online scheduling. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 516–527. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Möhring, R.H., Schulz, A.S., Uetz, M.: Approximation in stochastic scheduling: The power of lp-based priority schedules. Journal of ACM 46(6), 924–942 (1999)

    Article  MATH  Google Scholar 

  16. Papadimitriou, C.H.: Games against nature. J. of Comp. and Sys. Sc, 288–301 (1985)

    Google Scholar 

  17. Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

    MATH  Google Scholar 

  18. Schultz, R.: Stochastic programming with integer variables. Math. Progr. 97, 285–309 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Shmoys, D.B., Swamy, C.: Stochastic optimization is (almost) as easy as deterministic optimization. In: Proc. FOCS 2004, pp. 228–237 (2004)

    Google Scholar 

  20. Subramani, K.: Analyzing selected quantified integer programs. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 342–356. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Subramani, K.: On a decision procedure for quantified linear programs. Annals of Mathematics and Artificial Intelligence 51(1), 55–77 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient decision algorithms for probabilistic simulations. Logical Methods in Computer Science 4(4) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorenz, U., Martin, A., Wolf, J. (2010). Polyhedral and Algorithmic Properties of Quantified Linear Programs. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics