Abstract
Quantified linear programs (QLPs) are linear programs with variables being either existentially or universally quantified. The integer variant is PSPACE-complete, and the problem is similar to games like chess, where an existential and a universal player have to play a two-person-zero-sum game. At the same time, a QLP with n variables is a variant of a linear program living in \({\hbox{\rm I\kern - 0.15em R}}^n\), and it has strong similarities with multistage-stochastic programs with variable right-hand side. We show for the continuous case that the union of all winning policies of the existential player forms a polytope in \({\hbox{\rm I\kern - 0.15em R}}^n\), that its vertices are games of so called extremal strategies, and that these vertices can be encoded with polynomially many bits. The latter allows the conclusion that solving a QLP is in PSPACE. The hardness of the problem stays unknown.
Research partially supported by German Research Foundation (DFG) funded SFB 805.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Altenstedt, F.: Memory consumption versus computational time in nested benders decomposition for stochastic linear programming. Tech. Rep., Chalmers University, Goteborg (2003)
Bellmann, R.: Dynamic programming. Princeton University Press, Princeton (1957)
Birge, J.R., Louveaux, F.: Intro. to Stochastic Programming. Springer, Heidelberg (1997)
Donninger, C., Kure, A., Lorenz, U.: Parallel brutus: The first distributed, fpga accelarated chess program. In: Proc. of 18th International Parallel & Distributed Processing Symposium (IPDPS), Santa Fe. IEEE Computer Society, Los Alamitos (2004)
Dyer, M.E., Stougie, L.: Computational complexity of stochastic programming problems. Math. Program. 106(3), 423–432 (2006)
Eisenbrand, F., Rothvoß, T.: A ptas for static priority real-time scheduling with resource augmentation. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 246–257. Springer, Heidelberg (2008)
Engell, S., Märkert, A.M., Sand, G., Schultz, R.: Aggregated scheduling of a multiproduct batch plant by two-stage stochastic integer programming. Optimiz. and Engineering 5 (2004)
Grothklags, S., Lorenz, U., Monien, B.: From state-of-the-art static fleet assignment to flexible stochastic planning of the future. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 140–165. Springer, Heidelberg (2009)
Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Heidelberg (1993)
Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS (1997)
Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM Jour. of Opt., 479–502 (2001)
König, F.G., Lübbecke, M.E., Möhring, R.H., Schäfer, G., Spenke, I.: Solutions to real-world instances of pspace-complete stacking. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 729–740. Springer, Heidelberg (2007)
Liebchen, C., Lübbecke, M.E., Möhring, R.H., Stiller, S.: The concept of recoverable robustness, linear programming recovery, and railway applications. In: Robust and online large-scale optimization, pp. 1–27 (2009)
Megow, N., Vredeveld, T.: Approximation results for preemtive stochastic online scheduling. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 516–527. Springer, Heidelberg (2006)
Möhring, R.H., Schulz, A.S., Uetz, M.: Approximation in stochastic scheduling: The power of lp-based priority schedules. Journal of ACM 46(6), 924–942 (1999)
Papadimitriou, C.H.: Games against nature. J. of Comp. and Sys. Sc, 288–301 (1985)
Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
Schultz, R.: Stochastic programming with integer variables. Math. Progr. 97, 285–309 (2003)
Shmoys, D.B., Swamy, C.: Stochastic optimization is (almost) as easy as deterministic optimization. In: Proc. FOCS 2004, pp. 228–237 (2004)
Subramani, K.: Analyzing selected quantified integer programs. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 342–356. Springer, Heidelberg (2004)
Subramani, K.: On a decision procedure for quantified linear programs. Annals of Mathematics and Artificial Intelligence 51(1), 55–77 (2007)
Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient decision algorithms for probabilistic simulations. Logical Methods in Computer Science 4(4) (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lorenz, U., Martin, A., Wolf, J. (2010). Polyhedral and Algorithmic Properties of Quantified Linear Programs. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-15775-2_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15774-5
Online ISBN: 978-3-642-15775-2
eBook Packages: Computer ScienceComputer Science (R0)