Abstract
State machine replication is a popular approach to increasing the availability of computer services. While it has been largely studied in the presence of crash-stop failures and malicious failures, all existing state machine replication protocols that provide byzantine fault-tolerance implement some variant of atomic broadcast. In this context, this paper makes two contributions. First, it presents the first byzantine fault-tolerant generic broadcast protocol. Generic broadcast is more general than atomic broadcast, in that it allows applications to deliver commutative commands out of order—delivering a command out of order can be done in fewer communication steps than delivering a command in the same order. Second, the paper presents an efficient state machine replication protocol that tolerates byzantine failures. Our protocol requires fewer message delays than the best existing solutions under similar conditions. Moreover, processing of commutative commands on replicas requires only two MAC operations. The protocol is speculative in that it may rollback non-commutative commands.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21, 558–565 (1978)
Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A tutorial 22, 299–319 (1990)
Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative byzantine fault tolerance. ACM Transactions on Computer Systems 27, 1–39 (2009)
Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable byzantine fault-tolerant services. In: SOSP 2005: Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, pp. 59–74. ACM, New York (2005)
Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems 20, 398–461 (2002)
Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: a hybrid quorum protocol for byzantine fault tolerance. In: OSDI 2006: Proceedings of the 7th Symposium on Operating Systems Design and Implementation, pp. 177–190. USENIX Association, Berkeley (2006)
Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 bft protocols. In: EuroSys 2010: Proceedings of the 5th European Conference on Computer Systems, pp. 363–376. ACM, New York (2010)
Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Thrifty Generic Broadcast. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 268–283. Springer, Heidelberg (2000)
Lamport, L.: Generalized consensus and paxos. Technical report, Microsoft Research MSR-TR-2005-33 (2005)
Pedone, F., Schiper, A.: Handling message semantics with generic broadcast protocols. Distributed Computing 15, 97–107 (2002)
Raykov, P., Schiper, N., Pedone, F.: Byzantine fault-tolerance with commutative commands. Technical report, University of Lugano (2011), http://www.inf.usi.ch/faculty/pedone/Paper/2011/2011OPODIS-full.pdf
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 26, 96–99 (1983)
Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)
Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32, 374–382 (1985)
Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM 43, 225–267 (1996)
Ben-Or, M.: Another advantage of free choice (extended abstract): Completely asynchronous agreement protocols. In: PODC 1983: Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, pp. 27–30. ACM, New York (1983)
Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35, 288–323 (1988)
Toueg, S.: Randomized byzantine agreements. In: PODC 1984: Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing, pp. 163–178. ACM, New York (1984)
Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and Efficient Asynchronous Broadcast Protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001)
Lamport, L.: Lower bounds for asynchronous consensus. Distributed Computing 19, 104–125 (2006)
Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)
Malkhi, D., Reiter, M., Lynch, N.: A correctness condition for memory shared by byzantine processes (1998) (unpublished manuscript)
Aiyer, A.S., Alvisi, L., Bazzi, R.A., Clement, A.: Matrix Signatures: From MACs to Digital Signatures in Distributed Systems. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 16–31. Springer, Heidelberg (2008)
Kotla, R., Dahlin, M.: High-throughput byzantine fault tolerance. In: International Conference on Dependable Systems and Networks, DSN (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raykov, P., Schiper, N., Pedone, F. (2011). Byzantine Fault-Tolerance with Commutative Commands. In: Fernà ndez Anta, A., Lipari, G., Roy, M. (eds) Principles of Distributed Systems. OPODIS 2011. Lecture Notes in Computer Science, vol 7109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25873-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-25873-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25872-5
Online ISBN: 978-3-642-25873-2
eBook Packages: Computer ScienceComputer Science (R0)