Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Uncertainty Interval Temporal Sequences Extraction

  • Conference paper
Information Systems, Technology and Management (ICISTM 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 285))

Abstract

Searching for frequent sequential patterns has been used in several domains. We note that times granularities are more or less important with regards to the application domain. In this paper we propose a frequent interval time sequences (ITS) extraction technique from discrete temporal sequences using a sliding window approach to relax time constraints. The extracted sequences offer an interesting overview of the original data by allowing a temporal leeway on the extraction process. We formalize the ITS extraction under classical time and support constraints and conduct some experiments on synthetic data for validating our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of ACM 26 (1983)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of VLDB Conference (1994)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceeding of ICDE Conference. IEEE Computer Society Press (1995)

    Google Scholar 

  4. Chen, Y., Jiang, J.C., Peng, W.C., Lee, S.: An efficient algorithm for mining time interval-based patterns in large database. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM), pp. 49–58 (2010)

    Google Scholar 

  5. Fournier-Viger, P., Nkambou, R., Nguifo, E.M.: A knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems. In: Proceeding of the 7th Mexican International Conference on Artificial Intelligence, pp. 765–778 (2008)

    Google Scholar 

  6. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining sequences with temporal annotations. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, 593–597. ACM (2006)

    Google Scholar 

  7. Guyet, T., Quiniou, R.: Mining temporal patterns with quantitative intervals. In: Proceedings of The 4th International Workshop on Mining Complex Data. IEEE Computer Society (2008)

    Google Scholar 

  8. Guyet, T., Quiniou, R.: Extracting temporal patterns from interval-based sequences. In: Proceedings of IJCAI Conference, pp. 1306–1311 (2011)

    Google Scholar 

  9. Hirate, Y., Yamana, H.: Generalized sequential pattern mining with item intervals. JCP. Journal of Computers 1(3), 51–60 (2006)

    Google Scholar 

  10. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: Mining sequential patterns by prefix-projected growth. In: Proceedings of ICDE Conference, pp. 215–224 (2001)

    Google Scholar 

  11. Pham, Q., Raschia, G., Mouaddib, N., Saint-Paul, R., Benatallah, B.: Time sequence summarization to scale up chronology-dependent applications. In: Proceedings of CIKM Conference, pp. 1137–1146 (2009)

    Google Scholar 

  12. Rabatel, J., Bringay, S., Poncelet, P.: SO_MAD: SensOr Mining for Anomaly Detection in Railway Data. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 191–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Proceedings of EDBT Conference, pp. 3–17 (1996)

    Google Scholar 

  14. Wu, S., Chen, Y.: Mining non-ambiguous temporal patterns for interval-based events. IEEE Trans. on Knowl. and Data Eng. 9, 742–758 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben Zakour, A., Maabout, S., Mosbah, M., Sistiaga, M. (2012). Uncertainty Interval Temporal Sequences Extraction. In: Dua, S., Gangopadhyay, A., Thulasiraman, P., Straccia, U., Shepherd, M., Stein, B. (eds) Information Systems, Technology and Management. ICISTM 2012. Communications in Computer and Information Science, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29166-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29166-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29165-4

  • Online ISBN: 978-3-642-29166-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics