Abstract
Action language \(\mathcal{C}\)+ is a high level notation of nonmonotonic causal logic for describing properties of actions. The definite fragment of \(\mathcal{C}\)+ is implemented in VersionĀ 2 of the Causal Calculator (CCalc) based on the reduction of nonmonotonic causal logic to propositional logic. On the other hand, here we present two reformulations of the definite fragment of \(\mathcal{C}\)+ in terms of different versions of the stable model semantics. The first reformulation is in terms of the recently proposed stable model semantics of formulas with intensional functions, and can be encoded in the input language of CSP solvers. The second reformulation is in terms of the stable model semantics of propositional logic programs, which can be encoded in the input language of ASP systems. The second one is obtained from the first one by eliminating intensional functions in favor of intensional predicates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial IntelligenceĀ 153(1ā2), 49ā104 (2004)
Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary report. In: Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 623ā630. AAAI Press (1998)
McCain, N.: Causality in Commonsense Reasoning about Actions. PhD thesis, University of Texas at Austin (1997), ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz
Lee, J.: Automated Reasoning about Actions. PhD thesis, University of Texas at Austin (2005), http://peace.eas.asu.edu/joolee/papers/dissertation.pdf
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070ā1080. MIT Press (1988)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation ComputingĀ 9, 365ā385 (1991)
Ferraris, P., Lee, J., Lierler, Y., Lifschitz, V., Yang, F.: Representing first-order causal theories by logic programs. Theory and Practice of Logic Programming (2011), Available on CJO 2011, doi:10.1017/S1471068411000081
Casolary, M., Lee, J.: Representing the language of the causal calculator in answer set programming. In: ICLP (Technical Communications), pp. 51ā61 (2011)
Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning, KR (to appear, 2012)
Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol.Ā 3662, pp. 119ā131. Springer, Heidelberg (2005)
Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293ā322. Plenum Press, New York (1978)
Simons, P., NiemelƤ, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial IntelligenceĀ 138, 181ā234 (2002)
Lee, J., Palla, R.: System f2lp ā Computing Answer Sets of First-Order Formulas. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol.Ā 5753, pp. 515ā521. Springer, Heidelberg (2009)
Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372ā379 (2007)
Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial IntelligenceĀ 175, 236ā263 (2011)
Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial IntelligenceĀ 3, 195ā210 (1998), http://www.ep.liu.se/ea/cis/1998/016/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lee, J. (2012). Reformulating Action Language \(\mathcal{C}\)+ in Answer Set Programming. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds) Correct Reasoning. Lecture Notes in Computer Science, vol 7265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30743-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-30743-0_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30742-3
Online ISBN: 978-3-642-30743-0
eBook Packages: Computer ScienceComputer Science (R0)