Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reformulating Action Language \(\mathcal{C}\)+ in Answer Set Programming

  • Chapter
Correct Reasoning

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7265))

Abstract

Action language \(\mathcal{C}\)+ is a high level notation of nonmonotonic causal logic for describing properties of actions. The definite fragment of \(\mathcal{C}\)+ is implemented in VersionĀ 2 of the Causal Calculator (CCalc) based on the reduction of nonmonotonic causal logic to propositional logic. On the other hand, here we present two reformulations of the definite fragment of \(\mathcal{C}\)+ in terms of different versions of the stable model semantics. The first reformulation is in terms of the recently proposed stable model semantics of formulas with intensional functions, and can be encoded in the input language of CSP solvers. The second reformulation is in terms of the stable model semantics of propositional logic programs, which can be encoded in the input language of ASP systems. The second one is obtained from the first one by eliminating intensional functions in favor of intensional predicates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial IntelligenceĀ 153(1ā€“2), 49ā€“104 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary report. In: Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 623ā€“630. AAAI Press (1998)

    Google ScholarĀ 

  3. McCain, N.: Causality in Commonsense Reasoning about Actions. PhD thesis, University of Texas at Austin (1997), ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz

  4. Lee, J.: Automated Reasoning about Actions. PhD thesis, University of Texas at Austin (2005), http://peace.eas.asu.edu/joolee/papers/dissertation.pdf

  5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070ā€“1080. MIT Press (1988)

    Google ScholarĀ 

  6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation ComputingĀ 9, 365ā€“385 (1991)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  7. Ferraris, P., Lee, J., Lierler, Y., Lifschitz, V., Yang, F.: Representing first-order causal theories by logic programs. Theory and Practice of Logic Programming (2011), Available on CJO 2011, doi:10.1017/S1471068411000081

    Google ScholarĀ 

  8. Casolary, M., Lee, J.: Representing the language of the causal calculator in answer set programming. In: ICLP (Technical Communications), pp. 51ā€“61 (2011)

    Google ScholarĀ 

  9. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning, KR (to appear, 2012)

    Google ScholarĀ 

  10. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol.Ā 3662, pp. 119ā€“131. Springer, Heidelberg (2005)

    ChapterĀ  Google ScholarĀ 

  11. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293ā€“322. Plenum Press, New York (1978)

    ChapterĀ  Google ScholarĀ 

  12. Simons, P., NiemelƤ, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial IntelligenceĀ 138, 181ā€“234 (2002)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Lee, J., Palla, R.: System f2lp ā€“ Computing Answer Sets of First-Order Formulas. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol.Ā 5753, pp. 515ā€“521. Springer, Heidelberg (2009)

    ChapterĀ  Google ScholarĀ 

  14. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372ā€“379 (2007)

    Google ScholarĀ 

  15. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial IntelligenceĀ 175, 236ā€“263 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial IntelligenceĀ 3, 195ā€“210 (1998), http://www.ep.liu.se/ea/cis/1998/016/

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, J. (2012). Reformulating Action Language \(\mathcal{C}\)+ in Answer Set Programming. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds) Correct Reasoning. Lecture Notes in Computer Science, vol 7265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30743-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30743-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30742-3

  • Online ISBN: 978-3-642-30743-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics