Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Frequent Pattern Mining in Attributed Trees

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7818))

Included in the following conference series:

Abstract

Frequent pattern mining is an important data mining task with a broad range of applications. Initially focused on the discovery of frequent itemsets, studies were extended to mine structural forms like sequences, trees or graphs. In this paper, we introduce a new data mining method that consists in mining new kind of patterns in a collection of attributed trees (atrees). Attributed trees are trees in which vertices are associated with itemsets. Mining this type of patterns (called asubtrees), which combines tree mining and itemset mining, requires the exploration of a huge search space. We present several new algorithms for attributed trees mining and show that their implementations can efficiently list frequent patterns in a database of several thousand of attributed trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)

    Article  Google Scholar 

  2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)

    Google Scholar 

  3. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: SDM (2002)

    Google Scholar 

  4. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: KDD, pp. 429–435 (2002)

    Google Scholar 

  5. Balcázar, J.L., Bifet, A., Lozano, A.: Mining frequent closed rooted trees. Mach. Learn. 78(1-2), 1–33 (2010)

    Article  Google Scholar 

  6. Chehreghani, M.H.: Efficiently mining unordered trees. In: ICDM, pp. 111–120 (2011)

    Google Scholar 

  7. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundam. Inf. 66(1-2), 161–198 (2004)

    MathSciNet  Google Scholar 

  8. Chi, Y., Yang, Y., Muntz, R.R.: Hybridtreeminer: An efficient algorithm for mining frequent rooted trees and free trees using canonical form. In: SSDBM, pp. 11–20 (2004)

    Google Scholar 

  9. Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: Cmtreeminer: Mining both closed and maximal frequent subtrees. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 63–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Fukuzaki, M., Seki, M., Kashima, H., Sese, J.: Finding itemset-sharing patterns in a large itemset-associated graph. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part II. LNCS (LNAI), vol. 6119, pp. 147–159. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1–12 (2000)

    Article  Google Scholar 

  12. Hido, S., Kawano, H.: Amiot: Induced ordered tree mining in tree-structured databases. In: ICDM, pp. 170–177 (2005)

    Google Scholar 

  13. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed representations. In: KDD, pp. 189–194 (2005)

    Google Scholar 

  14. Miyoshi, Y., Ozaki, T., Ohkawa, T.: Frequent pattern discovery from a single graph with quantitative itemsets. In: ICDM Workshops, pp. 527–532 (2009)

    Google Scholar 

  15. Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs with feature vectors. In: SDM, pp. 593–604 (2009)

    Google Scholar 

  16. Mougel, P.-N., Rigotti, C., Gandrillon, O.: Finding collections of k-clique percolated components in attributed graphs. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS (LNAI), vol. 7302, pp. 181–192. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Nijssen, S., Kok, J.N.: Efficient discovery of frequent unordered trees. In: First International Workshop on Mining Graphs, Trees and Sequences (MGTS) (2003)

    Google Scholar 

  18. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Termier, A., Rousset, M.C., Sebag, M.: Dryade: A new approach for discovering closed frequent trees in heterogeneous tree databases. In: ICDM, pp. 543–546 (2004)

    Google Scholar 

  20. Termier, A., Rousset, M.C., Sebag, M., Ohara, K., Washio, T., Motoda, H.: Dryadeparent, an efficient and robust closed attribute tree mining algorithm. IEEE Trans. on Knowl. and Data Eng. 20(3), 300–320 (2008)

    Article  Google Scholar 

  21. Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., Shi, B.: Efficient pattern-growth methods for frequent tree pattern mining. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 441–451. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Explor. Newsl. 5(1), 59–68 (2003)

    Google Scholar 

  23. Xiao, Y., Yao, J.F., Li, Z., Dunham, M.H.: Efficient data mining for maximal frequent subtrees. In: ICDM, pp. 379–386 (2003)

    Google Scholar 

  24. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: KDD, pp. 71–80 (2002)

    Google Scholar 

  25. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundam. Inf. 66(1-2), 33–52 (2004)

    MathSciNet  Google Scholar 

  26. Zou, L., Lu, Y., Zhang, H., Hu, R.: Prefixtreeespan: a pattern growth algorithm for mining embedded subtrees. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp. 499–505. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pasquier, C., Sanhes, J., Flouvat, F., Selmaoui-Folcher, N. (2013). Frequent Pattern Mining in Attributed Trees. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37453-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37452-4

  • Online ISBN: 978-3-642-37453-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics