Abstract
Separation is a classical problem asking whether, given two sets belonging to some class, it is possible to separate them by a set from another class. We discuss the separation problem for regular languages. We give a Ptime algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a \(\mathcal{B}\Sigma_1(<)\) sentence can witness that the languages are disjoint. The proof refines an algebraic argument from Almeida and the third author. When separation is possible, we also express a separator by saturating one of the original languages by a suitable congruence. Following the same line, we show that one can as well decide whether two regular languages can be separated by an unambiguous language, albeit with a higher complexity.
Supported by the Agence Nationale de la Recherche ANR 2010 BLAN 0202 01 FREC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almeida, J.: Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen 54(suppl.), 531–552 (1999); Automata and formal languages, VIII (Salgótarján, 1996)
Almeida, J., Costa, J.C., Zeitoun, M.: Pointlike sets with respect to R and J. J. Pure Appl. Algebra 212(3), 486–499 (2008)
Almeida, J., Zeitoun, M.: The pseudovariety J is hyperdecidable. RAIRO Inform. Théor. Appl. 31(5), 457–482 (1997)
Ash, C.J.: Inevitable graphs: a proof of the type II conjecture and some related decision procedures. Internat. J. Algebra Comput. 1, 127–146 (1991)
Bacher, R.: An easy upper bound for Ramsey numbers. HAL, 00763927
Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular languages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer, Heidelberg (2013)
Henckell, K.: Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure Appl. Algebra 55(1-2), 85–126 (1988)
Henckell, K., Rhodes, J., Steinberg, B.: Aperiodic pointlikes and beyond. IJAC 20(2), 287–305 (2010)
Hunt III, H.B.: Decidability of grammar problems. J. ACM 29(2), 429–447 (1982)
Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory of Computing Systems 30(4), 383–422 (1997)
Place, T., Segoufin, L.: Deciding definability in \(\textrm{FO}_{2}(<_h,<_v)\) on trees. Journal Version (to appear, 2013)
Ribes, L., Zalesskiĭ, P.A.: On the profinite topology on a free group. Bull. London Math. Soc. 25, 37–43 (1993)
van Rooijen, L., Zeitoun, M.: The separation problem for regular languages by piecewise testable languages (2013), http://arxiv.org/abs/1303.2143
Schützenberger, M.: On finite monoids having only trivial subgroups. Information and Control 8(2), 190–194 (1965)
Schützenberger, M.: Sur le produit de concaténation non ambigu. Semigroup Forum 13, 47–75 (1976)
Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)
Simon, I.: Factorization forests of finite height. Th. Comp. Sci. 72(1), 65–94 (1990)
Stern, J.: Complexity of some problems from the theory of automata. Information and Control 66(3), 163–176 (1985)
Tesson, P., Therien, D.: Diamonds are forever: The variety DA. In: Semigroups, Algorithms, Automata and Languages, pp. 475–500. World Scientific (2002)
Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier alternation. In: Proc. of STOC 1998, pp. 234–240. ACM (1998)
Trahtman, A.N.: Piecewise and local threshold testability of DFA. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 347–358. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Place, T., van Rooijen, L., Zeitoun, M. (2013). Separating Regular Languages by Piecewise Testable and Unambiguous Languages. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-40313-2_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40312-5
Online ISBN: 978-3-642-40313-2
eBook Packages: Computer ScienceComputer Science (R0)