Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Separating Regular Languages by Piecewise Testable and Unambiguous Languages

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

Separation is a classical problem asking whether, given two sets belonging to some class, it is possible to separate them by a set from another class. We discuss the separation problem for regular languages. We give a Ptime algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a \(\mathcal{B}\Sigma_1(<)\) sentence can witness that the languages are disjoint. The proof refines an algebraic argument from Almeida and the third author. When separation is possible, we also express a separator by saturating one of the original languages by a suitable congruence. Following the same line, we show that one can as well decide whether two regular languages can be separated by an unambiguous language, albeit with a higher complexity.

Supported by the Agence Nationale de la Recherche ANR 2010 BLAN 0202 01 FREC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almeida, J.: Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen 54(suppl.), 531–552 (1999); Automata and formal languages, VIII (Salgótarján, 1996)

    Google Scholar 

  2. Almeida, J., Costa, J.C., Zeitoun, M.: Pointlike sets with respect to R and J. J. Pure Appl. Algebra 212(3), 486–499 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, J., Zeitoun, M.: The pseudovariety J is hyperdecidable. RAIRO Inform. Théor. Appl. 31(5), 457–482 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Ash, C.J.: Inevitable graphs: a proof of the type II conjecture and some related decision procedures. Internat. J. Algebra Comput. 1, 127–146 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bacher, R.: An easy upper bound for Ramsey numbers. HAL, 00763927

    Google Scholar 

  6. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular languages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer, Heidelberg (2013)

    Google Scholar 

  7. Henckell, K.: Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure Appl. Algebra 55(1-2), 85–126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henckell, K., Rhodes, J., Steinberg, B.: Aperiodic pointlikes and beyond. IJAC 20(2), 287–305 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Hunt III, H.B.: Decidability of grammar problems. J. ACM 29(2), 429–447 (1982)

    Article  MATH  Google Scholar 

  10. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory of Computing Systems 30(4), 383–422 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Place, T., Segoufin, L.: Deciding definability in \(\textrm{FO}_{2}(<_h,<_v)\) on trees. Journal Version (to appear, 2013)

    Google Scholar 

  12. Ribes, L., Zalesskiĭ, P.A.: On the profinite topology on a free group. Bull. London Math. Soc. 25, 37–43 (1993)

    Google Scholar 

  13. van Rooijen, L., Zeitoun, M.: The separation problem for regular languages by piecewise testable languages (2013), http://arxiv.org/abs/1303.2143

  14. Schützenberger, M.: On finite monoids having only trivial subgroups. Information and Control 8(2), 190–194 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schützenberger, M.: Sur le produit de concaténation non ambigu. Semigroup Forum 13, 47–75 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

    Google Scholar 

  17. Simon, I.: Factorization forests of finite height. Th. Comp. Sci. 72(1), 65–94 (1990)

    Article  MATH  Google Scholar 

  18. Stern, J.: Complexity of some problems from the theory of automata. Information and Control 66(3), 163–176 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tesson, P., Therien, D.: Diamonds are forever: The variety DA. In: Semigroups, Algorithms, Automata and Languages, pp. 475–500. World Scientific (2002)

    Google Scholar 

  20. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier alternation. In: Proc. of STOC 1998, pp. 234–240. ACM (1998)

    Google Scholar 

  21. Trahtman, A.N.: Piecewise and local threshold testability of DFA. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 347–358. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Place, T., van Rooijen, L., Zeitoun, M. (2013). Separating Regular Languages by Piecewise Testable and Unambiguous Languages. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics