Summary
Graph languages are sets of labeled graphs. They can be generated by graph grammars, and in particular by context-free graph grammars. There are several types of context-free graph grammars, depending, e.g., on whether (hyper)edges or nodes are rewritten by graphs. Basic properties of the main types of context-free graph grammars are discussed. Other, equivalent, ways of defining context-free graph languages are: generating graph expressions by regular tree grammars, and translating trees into graphs by formulas of monadic second-order logic. Context-free graph grammars can be used to generate string languages and tree languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Bauderon, B. Courcelle; Graph expressions and graph rewritings, Math. Systems Theory 20 (1987), 83–127
H. L. Bodlaender, J. Engelfriet; Domino treewidth, in Proc. 20th Int. Workshop on Graph Theoretic Concepts in Computer Science WG’94 (E. W. Mayr, G. Schmidt, G. Tinhofer, eds.), Lecture Notes in Computer Science 903, Springer-Verlag, Berlin, 1995, pp.1–13
J. Berstel; Transductions and Context-Free Languages, Teubner, Stuttgart, 1979
H. L. Bodlaender; A partial k-arboretum of graphs with bounded treewidth, Tech. Report UU-CS-1996–02, Utrecht University, January 1996
F. J. Brandenburg; The computational complexity of certain graph grammars, in Proc. 6th GI Conference on Theoretical Computer Science, Lecture Notes in Computer Science 145, Springer-Verlag, Berlin, 1983, pp.91–99
F. J. Brandenburg; On polynomial time graph grammars, in Proc. STACS’88, Lecture Notes in Computer Science 294, Springer-Verlag, Berlin, 1988, pp.227–236
F. J. Brandenburg; The equivalence of boundary and confluent graph grammars on graph languages of bounded degree, in Rewriting Technniques and Applications (R. V. Book, ed.), Lecture Notes in Computer Science 488, Springer-Verlag, Berlin, 1991, pp.312–322
F. J. Brandenburg, K. Skodinis; Graph automata for linear graph languages, in [CEER], 1996, pp.336–350
J. Büchi; Weak second-order arithmetic and finite automata, Z. Math. Logik Grundlag. Math. 6 (1960), 66–92
B. Courcelle, J. Engelfriet; A logical characterization of the sets of hyper-graphs defined by hyperedge replacement grammars, Math. Systems Theory 28 (1995), 515–552
J. Cuny, H. Ehrig, G. Engels, G. Rozenberg (eds.); Graph Grammars and their Application to Computer Science,Lecture Notes in Computer Science 1073, Springer-Verlag, Berlin, 1996
B. Courcelle, J. Engelfriet, G. Rozenberg; Handle-rewriting hypergraph grammars, J. of Comp. Syst. Sci. 46 (1993), 218–270
D. G. Corneil, H. Lerchs, L. Stewart Burlingham; Complement reducible graphs, Discrete Appl. Math. 3 (1981), 163–174
B. Courcelle, M. Mosbah; Monadic second-order evaluations on tree decomposable graphs, Theor. Comput. Sci. 109 (1993), 49–82
B. Courcelle; An axiomatic definition of context-free rewriting and its application to NLC graph grammars, Theor. Comput. Sci. 55 (1987), 141–181
B. Courcelle; The monadic second-order logic of graphs I: Recognizable sets of finite graphs, Inform. and Comput. 85 (1990), 12–75
B. Courcelle; Graph rewriting: an algebraic and logic approach, in Handbook of Theoretical Computer Science, Vol.B (J.van Leeuwen, ed.), Elsevier, Amsterdamm, 1990, pp.193–242
B. Courcelle; The monadic second-order logic of graphs V: On closing the gap between definability and recognizability, Theor. Comput. Sci. 80 (1991), 153–202
B. Courcelle; The monadic second-order logic of graphs III: Tree-decompositions, minors and complexity issues, RAIRO Theoretical Informatics and Applications 26 (1992), 257–286
B. Courcelle; The monadic second-order logic of graphs VII: Graphs as relational structures, Theor. Comput. Sci. 101 (1992), 3–33
B. Courcelle; Graph grammars, monadic second-order logic and the theory of graph minors, in Graph Structure Theory (N. Robertson, P. Seymour, eds.), Contemporary Mathematics 147, AMS, 1993, pp.565–590. Preliminary version in Bulletin of the EATCS 46 (1992), 193–226
B. Courcelle; The monadic second-order logic of graphs VI: On several representations of graphs by relational structures, Discr. Appl. Math. 54 (1994), 117–149
B. Courcelle; Monadic second-order definable graph transductions: a survey, Theor. Comput. Sci. 126 (1994), 53–75
B. Courcelle; Structural properties of context-free sets of graphs generated by vertex replacement, Inform. and Comput. 116 (1995), 275–293
B. Courcelle; The expression of graph properties and graph transformations in monadic second-order logic, Chapter for the Handbook of Graph Transformations,Volume I: Foundations (G. Rozenberg, ed.), World Scientific, Singapore, to appear.
B. Courcelle; Basic notions of universal algebra for language theory and graph grammars, to appear in Theor. Comput. Sci.
B. Courcelle, G. Sénizergues; The obstructions of a minor-closed set of graphs defined by hyperedge replacement can be constructed, in [CEER], 1996, pp.351–367
F. Drewes, A. Habel, H.-J. Kreowski; Hyperedge replacement graph grammars, Chapter for the Handbook of Graph Transformations, Volume I: Foundations (G. Rozenberg, ed.), World Scientific, Singapore, to appear.
J. Doner; Tree acceptors and some of their applications, J. Comput. Syst. Sci. 4 (1970), 406–451
F. Drewes; Transducibility - symbolic computation by tree-transductions, University of Bremen, Report Nr. 2/93, 1993
F. Drewes; The use of tree transducers to compute translations between graph algebras, in [CEER], 1996, pp.196–210 (full version: Report Nr. 8/94, 1994, University of Bremen)
F. Drewes; Computation by tree transductions, Ph. D. Thesis, University of Bremen, February 1996
J. Engelfriet, L. M. Heyker; The string generating power of context-free hypergraph grammars, J. of Comp. Syst. Sci. 43 (1991), 328–360
J. Engelfriet, L. M. Heyker; Context-free hypergraph grammars have the same term-generating power as attribute grammars, Acta Informatica 29 (1992), 161–210
J. Engelfriet, L. M. Heyker; Hypergraph languages of bounded degree, J. of Comp. Syst. Sci. 48 (1994), 58–89
J. Engelfriet, L. M. Heyker, G. Leih; Context-free graph languages of bounded degree are generated by apex graph grammars, Acta Informatica 31 (1994), 341–378
H. Ehrig, H.-J. Kreowski, G. Rozenberg (eds.); Graph-Grammars and their Application to Computer Science, Lecture Notes in Computer Science 532, Springer-Verlag, Berlin, 1991
J. Engelfriet, G. Leih; Linear graph grammars-power and complexity, Inform. and Comput. 81 (1989), 88–121
C. C. Elgot; Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98 (1961), 21–52
J. Engelfriet, G. Leih, E. Welzl; Boundary graph grammars with dynamic edge relabeling, J. of Comp. Syst. Sci. 40 (1990), 307–345
J. Engelfriet; The complexity of languages generated by attribute grammars, SIAM J. Comput. 15 (1986), 70–86
J. Engelfriet; A characterization of context-free NCE graph languages by monadic second-order logic on trees, in [EKR], 1991, pp.311–327
J. Engelfriet; A Greibach normal form for context-free graph grammars, in Proc. ICALP ’82 (W. Kuich, ed.), Lecture Notes in Computer Science 623, Springer-Verlag, Berlin, 1992, pp.138–149
J. Engelfriet; Graph grammars and tree transducers, in Proc. CAAP’94 (S. Tison, ed.), Lecture Notes in Computer Science 787, Springer-Verlag, Berlin, 1994, pp.15–36
J. Engelfriet; An elementary proof of Double Gréibach Normal Form, Inf. Proc. Letters 44 (1992), 291–293
H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld (eds.); Graph-Grammars and their Application to Computer Science, Lecture Notes in Computer Science 291, Springer-Verlag, Berlin, 1987
J. Engelfriet, V.van Oostrom; Regular description of context-free graph languages, Tech. Report 95–34, Leiden University, 1995, to appear in J. of Comp. Syst. Sci.
J. Engelfriet, G. Rozenberg; A comparison of boundary graph grammars and context-free hypergraph grammars, Inform. and Comput. 84 (1990), 163–206
J. Engelfriet, G. Rozenberg; Node replacement graph grammars, Chapter for the Handbook of Graph Transformations,Volume I: Foundations (G. Rozenberg, ed.), World Scientific, Singapore, to appear.
J. Engelfriet, G. Rozenberg, G. Slutzki; Tree transducers, L systems, and two-way machines, J. of Comp. Syst. Sci. 20 (1980), 150–202
J. Engelfriet, J. J. Vereijken; Context-free graph grammars and concatenation of graphs, Tech. Report 95–27, Leiden University, 1995, to appear in Acta Informatica. See also [LEER], 1996, pp.368–382
J. Engelfriet, H. Vogler; The translation power of top-down tree-to-graph transducers, J. of Comp. Syst. Sci. 49 (1994), 258–305
R. Farrow, K. Kennedy, L. Zucconi; Graph grammars and global program data flow analysis, in Proc. 17th Annual IEEE Symposium on Foundations of Computer Science, 1976, pp.42–56
F. Gécseg, M. Steinby; Tree automata, Akadémiai Kiad6, Budapest, 1984
S. Ginsburg, E. H. Spanier; Finite-turn pushdown automata, SIAM J. Control 4 (1966), 429–453
S. Ginsburg, E. H. Spanier; Derivation bounded languages; J. Comput. Syst. Sci. 2 (1968), 228–250
S. Greibach; One-way finite visit automata, Theor. Comput. Sci. 6 (1978), 175–221
J. Gruska; A characterization of context-free languages, J. Comput. Syst. Sci. 5 (1971), 353–364
A. Habel; Hyperedge Replacement: Grammars and Languages,Lecture Notes in Computer Science 643, Springer-Verlag, Berlin, 1992
A. Habel; Hypergraph grammars: transformational and algorithmic aspects, J. Inform. Process. Cybernet. EIK 28 (1992), 241–277
A. Habel, H.-J. Kreowski; Characteristics of graph languages generated by edge replacement, Theor. Comput. Sci. 51 (1987), 81–115
A. Habel, H.-J. Kreowski; Some structural aspects of hypergraph languages generated by hyperedge replacement, in Proc. STACS’87, Lecture Notes in Computer Science 247, Springer-Verlag, Berlin, 1987, pp.207–219
A. Habel, H.-J. Kreowski; May we introduce to you: hyperedge replacement, in [ENRR], 1987, pp.15–26
A. Habel, H.-J. Kreowski; Filtering hyperedge replacement languages through compatible properties, in Graph Theoretic Concepts in Computer Science (M. Nagl, ed.), Lecture Notes in Computer Science 411, Springer-Verlag, Berlin, 1990, pp.107–120
A. Habel, H.-J. Kreowski, C. Lautemann; A comparison of compatible, finite, and inductive graph properties, Theor. Comput. Sci. 110 (1993), 145–168
A. Habel, H.-J. Kreowski, W. Vogler; Metatheorems for decision problems on hyperedge replacement graph languages, Acta Informatica 26 (1989), 657–677
A. Habel, H.-J. Kreowski, W. Vogler; Decidable boundedness problems for sets of graphs generated by hyperedge replacement, Theor. Comput. Sci. 89 (1991), 33–62
D. Janssens, G. Rozenberg; On the structure of node-label-controlled graph languages, Information Sciences 20 (1980), 191–216
D. Janssens, G. Rozenberg; A characterization of context-free string languages by directed node-label controlled graph grammars, Acta Informatica 16 (1981), 63–85
D. Janssens, G. Rozenberg; Graph grammars with neighbourhood-controlled embedding, Theor. Comput. Sci. 21 (1982), 55–74
D. Janssens, G. Rozenberg; A survey of NLC grammars, Proc. CAAP’83, Lecture Notes in Computer Science 159, Springer-Verlag, Berlin, 1983, pp.114–128
M. Kaul; Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken, Dissertation, Universität Osnabrück, 1985
C. Kim, T. E. Jeong; HRNCE grammars — a hypergraph generating system with an eNCE way of rewriting, in [CEER], 1996, pp.383–396
R. Klempien-Hinrichs; Node replacement in hypergraphs: simulation of hyperedge replacement, and decidability of confluence, in [CEER], 1996, pp.397–411
T. Kloks; Treewidth — Computations and Approximations, Lecture Notes in Computer Science 842, Springer-Verlag, Berlin, 1994
H.-J. Kreowski; Five facets of hyperedge replacement beyond context-freeness, in Proc. FCT’93, Lecture Notes in Computer Science 710, Springer-Verlag, Berlin, 1993, pp.69–86
C. Lautemann; Decomposition trees: structured graph representation and efficient algorithms, in Proc. CAAP’88, Lecture Notes in Computer Science 299, Springer-Verlag, Berlin, 1988, pp.28–39
C. Lautemann; The complexity of graph languages generated by hyperedge replacement, Acta Informatica 27 (1990), 399–421
T. Lengauer, E. Wanke; Efficient decision procedures for graph properties on context-free graph languages, J. of the ACM 40 (1993), 368–393
J. Mezei, J. B. Wright; Algebraic automata and context-free sets, Inform. and Control 11 (1967), 3–29
M. Nagl; Formal languages of labelled graphs, Computing 16 (1976), 113–137
M. Nagl; Graph-Grammatiken, Vieweg, Braunschweig, 1979
V.van Oostrom; Graph grammars and 2nd order logic (in Dutch), M. Sc. Thesis, Leiden University, January 1989
O. Rambow, G. Satta; Independent parallelism in finite copying parallel rewriting systems, to appear in Theor. Comput. Sci. See also Proc. CAAP’94, Lecture Notes in Computer Science 787, pp.308–321
J.-C. Raoult, A. Grazon; Recursively defined tree transductions, Manuscript, IRISA, Rennes, April 1995. See also Proc. 5th RTA, Lecture Notes in Computer Science 690, Springer-Verlag, 1993, pp.343–357
N. Robertson, P. D. Seymour; Graph minors I. Excluding a forest, J. Comb. Theory Ser.B 35 (1983), 39–61
N. Robertson, P. D. Seymour; Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986), 309–322
G. Rozenberg, E. Welzl; Boundary NLC graph grammars - basic definitions, normal forms, and complexity, Inform. and Control 69 (1986), 136–167
G. Rozenberg, E. Welzl; Combinatorial properties of boundary NLC graph languages, Discrete Appl. Math. 16 (1987), 59–73
A. Salomaa; Formal Languages,Academic Press, New York, 1973
R. Schuster; Graphgrammatiken and Grapheinbettungen: Algorithmen and Komplexität, Technical Report MIP-8711, Universität Passau, 1987
H. Seki, T. Matsumura, M. Fujii, T. Kasami; On multiple context-free grammars, Theor. Comput. Sci. 88 (1991), 191–229
K. Skodinis, E. Wanke; Emptiness problems of eNCE graph languages, J. of Comp. Syst. Sci. 51 (1995), 472–485
K. Skodinis, E. Wanke; Neighborhood-preserving confluent node replacement, Manuscript, November 1995
M. Thorup; Structured programs have small tree-width and good register allocation, Tech. Report DIKU-TR-95/18, University of Copenhagen, 1995
J. Thatcher, J. Wright; Generalized finite automata theory with an application to a decision problem of second-order logic, Math. Syst. Theory 2 (1968), 57–81
W. Vogler; On hyperedge replacement and BNLC graph grammars, Discrete Appl. Math. 46 (1993), 253–273
N.van Vugt; Generalized context-free grammars, M. Sc. Thesis, Internal Report 96–12, Leiden University, April 1996
K. Vijay-Shanker, D. J. Weir, A. K. Joshi; Characterizing structural descriptions produced by various grammatical formalisms, in Proc. 25th Annual Meeting of the Association for Computational Linguists (1987), 104–111
E. Wanke; Algorithms for graph problems on BNLC structured graphs, Inform. and Comput. 94 (1991), 93–122
D. J. Weir; Linear context-free rewriting systems and deterministic tree-walking transducers, in Proc. 30th Annual Meeting of the Association for Computational Linguists (1992)
E. Welzl; Encoding graphs by derivations and implications for the theory of graph grammars, in Proc. ICALP ‘84 (J. Paredaens,ed.), Lecture Notes in Computer Science 172, Springer-Verlag, Berlin, 1984, pp.503–513
E. Welzl; On the set of all subgraphs of the graphs in a boundary NLC graph language, in The Book of L (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, 1986, pp.445–459
D. Wood; Grammar and L Forms: an Introduction,Lecture Notes in Computer Science 91, Springer-Verlag, Berlin, 1980
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Engelfriet, J. (1997). Context-Free Graph Grammars. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59126-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-59126-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-63859-6
Online ISBN: 978-3-642-59126-6
eBook Packages: Springer Book Archive