Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Approach to Computing Downward Closures

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Included in the following conference series:

Abstract

The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes.

This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property.

This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Boasson, L., Bouajjani, A.: Effective lossy queue languages. In: Proc. of ICALP 2001, pp. 639–651 (2001)

    Google Scholar 

  2. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using Forward Reachability Analysis for Verification of Lossy Channel Sys- tems. Form. Method. Syst. Des. 25(1), 39–65 (2004)

    Article  MATH  Google Scholar 

  3. Aho, A.V.: Indexed grammars-an extension of context-free grammars. J. ACM 15(4), 647–671 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model Checking Vector Addition Systems with one zero-test. In: LMCS 8.2:11 (2012)

    Google Scholar 

  5. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of push- down automata: application to model-checking. In: Proc. of CONCUR 1997, pp. 135–150 (1997)

    Google Scholar 

  6. Colcombet, T.: Regular cost functions, Part I: logic and algebra over words. In: LMCS 9.3 (2013)

    Google Scholar 

  7. Courcelle, B.: On constructing obstruction sets of words. Bulletin of the EATCS 44, 178–186 (1991)

    MATH  Google Scholar 

  8. Czerwiński, W., Martens, W.: A Note on Decidable Separability by Piece- wise Testable Languages (2014). arXiv:1410.1042 [cs.FL]

  9. Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  10. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 101–154. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  11. Ehrenfeucht, A., Rozenberg, G., Skyum, S.: A relationship between ET0L and EDT0L languages. Theor. Comput. Sci. 1(4), 325–330 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gilman, R.H.: A shrinking lemma for indexed languages. Theor. Comput. Sci. 163(1-2), 277–281 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gruber, H., Holzer, M., Kutrib, M.: The size of Higman-Haines sets. Theor. Comput. Sci. 387(2), 167–176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Habermehl, P., Meyer, R., Wimmel, H.: The downward-closure of petri net languages. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 466–477. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Haines, L.H.: On free monoids partially ordered by embedding. J. Combin. Theory 6(1), 94–98 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hayashi, T.: On Derivation Trees of Indexed Grammars-An Extension of the uvwxy-Theorem–. Publications of the Research Institute for Mathematical Sciences 9(1), 61–92 (1973)

    Article  MATH  Google Scholar 

  17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  18. Jantzen, M.: On the hierarchy of Petri net languages. RAIRO Theor. Inf. Appl. 13(1), 19–30 (1979)

    MATH  MathSciNet  Google Scholar 

  19. Jullien, P.: Contribution à létude des types d’ordres dispersés. Université de Marseille, PhD thesis (1969)

    Google Scholar 

  20. Kartzow, A.: A pumping lemma for collapsible pushdown graphs of level 2. In: Proc. of CSL 2011, pp. 322–336 (2011)

    Google Scholar 

  21. van Leeuwen, J.: Effective constructions in well-partially-ordered free monoids. Discrete Math. 21(3), 237–252 (1978)

    Article  MathSciNet  Google Scholar 

  22. Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 12(1), 38–42 (1976)

    Google Scholar 

  23. Mayr, R.: Undecidable problems in unreliable computations. Theor. Comput. Sci. 297(1-3), 337–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Parys, P.: A pumping lemma for pushdown graphs of any level. In: Proc. of STACS 2012, pp. 54–65 (2012)

    Google Scholar 

  25. Rounds, W.C.: Tree-oriented proofs of some theorems on context-free and indexed languages. In: Proc. of STOC 1970, pp. 109–116 (1970)

    Google Scholar 

  26. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theor. Comput. Sci. 88(2), 191–229 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Smith, T.: On infinite words determined by indexed languages. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 511–522. Springer, Heidelberg (2014)

    Google Scholar 

  28. Zetzsche, G.: An approach to computing downward closures (2015). arXiv:1503. 01068 [cs.FL]

    Google Scholar 

  29. Zetzsche, G.: Computing downward closures for stacked counter au tomata. In: Proc. of STACS 2015, pp. 743–756 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Zetzsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zetzsche, G. (2015). An Approach to Computing Downward Closures. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics