Abstract
The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes.
This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property.
This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdulla, P.A., Boasson, L., Bouajjani, A.: Effective lossy queue languages. In: Proc. of ICALP 2001, pp. 639–651 (2001)
Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using Forward Reachability Analysis for Verification of Lossy Channel Sys- tems. Form. Method. Syst. Des. 25(1), 39–65 (2004)
Aho, A.V.: Indexed grammars-an extension of context-free grammars. J. ACM 15(4), 647–671 (1968)
Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model Checking Vector Addition Systems with one zero-test. In: LMCS 8.2:11 (2012)
Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of push- down automata: application to model-checking. In: Proc. of CONCUR 1997, pp. 135–150 (1997)
Colcombet, T.: Regular cost functions, Part I: logic and algebra over words. In: LMCS 9.3 (2013)
Courcelle, B.: On constructing obstruction sets of words. Bulletin of the EATCS 44, 178–186 (1991)
Czerwiński, W., Martens, W.: A Note on Decidable Separability by Piece- wise Testable Languages (2014). arXiv:1410.1042 [cs.FL]
Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer-Verlag, Berlin (1989)
Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 101–154. Springer, Heidelberg (1997)
Ehrenfeucht, A., Rozenberg, G., Skyum, S.: A relationship between ET0L and EDT0L languages. Theor. Comput. Sci. 1(4), 325–330 (1976)
Gilman, R.H.: A shrinking lemma for indexed languages. Theor. Comput. Sci. 163(1-2), 277–281 (1996)
Gruber, H., Holzer, M., Kutrib, M.: The size of Higman-Haines sets. Theor. Comput. Sci. 387(2), 167–176 (2007)
Habermehl, P., Meyer, R., Wimmel, H.: The downward-closure of petri net languages. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 466–477. Springer, Heidelberg (2010)
Haines, L.H.: On free monoids partially ordered by embedding. J. Combin. Theory 6(1), 94–98 (1969)
Hayashi, T.: On Derivation Trees of Indexed Grammars-An Extension of the uvwxy-Theorem–. Publications of the Research Institute for Mathematical Sciences 9(1), 61–92 (1973)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)
Jantzen, M.: On the hierarchy of Petri net languages. RAIRO Theor. Inf. Appl. 13(1), 19–30 (1979)
Jullien, P.: Contribution à létude des types d’ordres dispersés. Université de Marseille, PhD thesis (1969)
Kartzow, A.: A pumping lemma for collapsible pushdown graphs of level 2. In: Proc. of CSL 2011, pp. 322–336 (2011)
van Leeuwen, J.: Effective constructions in well-partially-ordered free monoids. Discrete Math. 21(3), 237–252 (1978)
Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 12(1), 38–42 (1976)
Mayr, R.: Undecidable problems in unreliable computations. Theor. Comput. Sci. 297(1-3), 337–354 (2003)
Parys, P.: A pumping lemma for pushdown graphs of any level. In: Proc. of STACS 2012, pp. 54–65 (2012)
Rounds, W.C.: Tree-oriented proofs of some theorems on context-free and indexed languages. In: Proc. of STOC 1970, pp. 109–116 (1970)
Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theor. Comput. Sci. 88(2), 191–229 (1991)
Smith, T.: On infinite words determined by indexed languages. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 511–522. Springer, Heidelberg (2014)
Zetzsche, G.: An approach to computing downward closures (2015). arXiv:1503. 01068 [cs.FL]
Zetzsche, G.: Computing downward closures for stacked counter au tomata. In: Proc. of STACS 2015, pp. 743–756 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zetzsche, G. (2015). An Approach to Computing Downward Closures. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_35
Download citation
DOI: https://doi.org/10.1007/978-3-662-47666-6_35
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47665-9
Online ISBN: 978-3-662-47666-6
eBook Packages: Computer ScienceComputer Science (R0)