Abstract
Convolutional neural network (CNN) has become the architecture of choice for visual recognition tasks. However, these models are perceived as black boxes since there is a lack of understanding of their learned behavior from the underlying task of interest. This lack of transparency is a drawback since poorly understood model behavior could adversely impact subsequent decision-making. Researchers use novel machine learning (ML) tools to classify the medical imaging modalities. However, it is poorly understood how these algorithms discriminate the modalities and if there are implicit opportunities for improving visual information access applications in computational biomedicine. In this study, we visualize the learned weights and salient network activations in a CNN based Deep Learning (DL) model to determine the image characteristics that lend themselves for improved classification with a goal of developing informed clinical question-answering systems. To support our analysis we cross-validate model performance to reduce bias and generalization errors and perform statistical analyses to assess performance differences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben Abacha, A., Gayen, S., Lau, J.J., Rajaraman, S., Demner-Fushman, D.: NLM at ImageCLEF 2018 visual question answering in the medical domain. In: CEUR Workshop Proceedings, p. 2125 (2018)
Demner-Fushman, D., Antani, S., Thoma, G.R., Simpson, M.: Design and development of a multimodal biomedical information retrieval system. J. Comput. Sci. Eng. 6, 168–177 (2012)
Rajaraman, S., Candemir, S., Kim, I., Thoma, G.R., Antani, S.: Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. MDPI Appl. Sci. 8(10), 1715 (2018)
Rajaraman, S., et al.: Understanding the learned behavior of customized convolutional neural networks toward malaria parasite detection in thin blood smear images. J. Med. Imag. 5(3), 034501 (2018)
Rajaraman, S., et al.: A novel stacked generalization of models for improved TB detection in chest radiographs. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 718–721 (2018)
Thamizhvani, T.R., Lakshmanan, S., Rajaraman, S.: Mobile application-based computer-aided diagnosis of skin tumours from dermal images. Imaging Sci J. 66(6), 382–391 (2018)
Khan, S., Yong, S.P.: A comparison of deep learning and hand crafted features in medical image modality classification. In: Proceedings of the International Conference on Computer and Information Sciences, pp. 633–638 (2016)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Rajaraman, S., et al.: Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 6, e4568 (2018)
Rajaraman, S., et al.: Comparing deep learning models for population screening using chest radiography. In: Proceedings of the SPIE Medical Imaging: Computer-aided Diagnosis, p. 105751E (2018)
Rajaraman, S., Antani, S., Xue, Z., Candemir, S., Jaeger, S., Thoma, G.R.: Visualizing abnormalities in chest radiographs through salient network activations in deep learning. In: Proceedings of the IEEE Life Sciences Conference, pp. 71–74 (2017)
Rajaraman, S., Antani, S., Jaeger, S.: Visualizing deep learning activations for improved malaria cell classification. Proc. Mach. Learn. Res. 69, 40–47 (2017)
Xue, Z., Rajaraman, S., Long, L.R., Antani, S., Thoma, G.R.: Gender detection from spine x-ray images using deep learning. In: Proceedings of the IEEE International Symposium on Computer-based Medical Systems, pp. 54–58 (2018)
Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the 7th International Conference on Document Analysis and Recognition, pp. 958–963 (2003)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1–9 (2012)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2015)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Chollet, F.: Xception: Deep Learning with Separable Convolutions. arXiv preprint arXiv:1610.02357 (2016)
Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely Connected Convolutional Networks. arXiv preprint arXiv:1608.06993 (2017)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)
Margeta, J., Criminisi, A., Lozoya, R.C., Lee, D.C., Ayache, N.: Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 5, 339–349 (2017)
Lynch, S., Ng, A.: Why AI is the new electricity. https://news.stanford.edu/thedish/2017/03/14/andrew-ng-why-ai-is-the-new-electricity/
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 512–519 (2014)
De Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the ImageCLEF 2016 medical task. In: CEUR Workshop Proceedings, p. 1609 (2016)
Apostolova, E., You, D., Xue, Z., Antani, S., Demner-Fushman, D., Thoma, G.R.: Image retrieval from scientific publications: Text and image content processing to separate multipanel figures. J. Am. Soc. Inf. Sci. Tec. 64, 893–908 (2013)
Santosh, K.C., Aafaque, A., Antani, S., Thoma, G.R.: Line segment-based stitched multipanel figure separation for effective biomedical CBIR. Int. J. Pattern Recogn. Artif. Intell. 31(6), 1757003 (2017)
Santosh, K.C., Xue, Z., Antani, S., Thoma, G.R.: NLM at ImageCLEF 2015: biomedical multipanel figure separation. In: CEUR Workshop Proceedings, p. 1391 (2015)
Santosh, K.C., Antani, S., Thoma, G.R.: Stitched multipanel biomedical figure separation. In: IEEE International Symposium on Computer-based Medical Systems, pp. 54–59 (2009)
De Herrera, A., Markonis, D., Müller, H.: Bag–of–colors for biomedical document image classification. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2012. LNCS, vol. 7723, pp. 110–121. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36678-9_11
Pelka, O., Friedrich, C.M.: FHDO biomedical computer science group at medical classification task of ImageCLEF 2015. In: CEUR Workshop Proceedings, p. 1391 (2015)
Cirujeda, P., Binefa, X.: Medical image classification via 2D color feature based covariance descriptors. In: CEUR Workshop Proceedings, p. 1391 (2015)
Li, P., et al.: UDEL CIS at ImageCLEF medical task 2016. In: CEUR Workshop Proceedings, p. 1609 (2016)
De Herrera, A., Kalpathy-Cramer, J., Fushman, D.D., Antani, S., Müller, H.: Overview of the imageCLEF 2013 medical tasks. In: CEUR Workshop Proceedings, p. 1179 (2013)
Yu, Y., et al.: Modality classification for medical images using multiple deep convolutional neural networks. J. Comput. Inf. Syst. 11(15), 5403–5413 (2015)
Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D.: An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J. Biomed. Heal. Inf. 21, 31–40 (2017)
Yu, Y., Lin, H., Meng, J., Wei, X., Guo, H., Zhao, Z.: Deep transfer learning for modality classification of medical images. MDPI Inf. 8(3), 91 (2017)
Koitka, S., Friedrich, C.M.: Traditional feature engineering and deep learning approaches at medical classification task of ImageCLEF 2016. In: CEUR Workshop Proceedings, p. 1609 (2016)
Zhang, J., Xia, Y., Wu, Q., Xie, Y.: Classification of Medical Images and Illustrations in the Biomedical Literature Using Synergic Deep Learning. arXiv preprint arXiv:1706.09092 (2017)
Vallières, M., Freeman, C.R., Skamene, S.R., El Naqa, I.: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60, 5471–5496 (2015)
Bloch, B., Jain, A., Jaffe, C.: Data From BREAST-DIAGNOSIS. https://wiki.cancerimagingarchive.net/display/Public/BREAST-DIAGNOSIS#9e4592af79b249bfaff992eceebbf842
Vallières, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 10117 (2017)
Gevaert, O., et al.: Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results. Radiology 264, 387–396 (2012)
Kurdziel, K.A., et al.: The kinetics and reproducibility of 18F-sodium fluoride for oncology using current pet camera technology. J. Nucl. Med. 53, 1175–1184 (2012)
Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013)
Decencière, E., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereol. 33, 231–234 (2014)
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–19 (2017)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)
Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. BBA - Protein Struct. 405, 442–451 (1975)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014, LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. Statistician 33, 391–399 (1984)
Rossi, J.S.: One-way ANOVA from summary statistics. Educ. Psychol. Meas. 47, 37–38 (1987)
Daya, S.: One-way analysis of variance. Evid. Based Obstet. Gynecol. 5, 153–155 (2003)
Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52, 591 (1965)
Gastwirth, J.L., Gel, Y.R., Miao, W.: The Impact of levene’s test of equality of variances on statistical theory and practice. Stat. Sci. 24, 343–360 (2009)
Kucuk, U., Eyuboglu, M., Kucuk, H.O., Degirmencioglu, G.: Importance of using proper post hoc test with ANOVA. Int. J. Cardiol. 209, 346 (2016)
Bressler, S.L.: Large-scale cortical networks and cognition. Brain Res. Rev. 20(3), 288–304 (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Rajaraman, S., Antani, S. (2019). Visualizing Salient Network Activations in Convolutional Neural Networks for Medical Image Modality Classification. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1036. Springer, Singapore. https://doi.org/10.1007/978-981-13-9184-2_4
Download citation
DOI: https://doi.org/10.1007/978-981-13-9184-2_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9183-5
Online ISBN: 978-981-13-9184-2
eBook Packages: Computer ScienceComputer Science (R0)