Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fully Dynamic Algorithms for Euclidean Steiner Tree

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2024)

Abstract

The Euclidean Steiner tree problem asks to find a min-cost metric graph that connects a given set of terminal points X in \(\mathbb {R}^d\), possibly using points not in X which are called Steiner points. Even though near-linear time \((1 + \epsilon )\)-approximation was obtained in the offline setting in seminal works of Arora and Mitchell, efficient dynamic algorithms for Steiner tree is still open. We give the first algorithm that (implicitly) maintains a \((1 + \epsilon )\)-approximate solution which is accessed via a set of tree traversal queries, subject to point insertion and deletions, with amortized update and query time \(O(\textrm{poly}\log n)\) with high probability. Our approach is based on an Arora-style geometric dynamic programming, and our main technical contribution is to maintain the DP subproblems in the dynamic setting efficiently. We also need to augment the DP subproblems to support the tree traversal queries.

Full version of this paper is available at [5]

T-H. Hubert Chan was partially supported by the Hong Kong RGC grant 17203122.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this informal statement we consider d and \(\epsilon \) as constants and their dependence are hidden in the big-O.

  2. 2.

    We state the exact dependence of d which was not accurately calculated in [1], see the appendix for the details.

References

  1. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MathSciNet  Google Scholar 

  2. Berman, P., Ramaiyer, V.: Improved approximations for the steiner tree problem. J. Algorithms 17(3), 381–408 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bern, M., Plassmann, P.: The steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)

    Article  MathSciNet  Google Scholar 

  4. Byrka, J., Grandoni, F., Rothvoß, T., Sanita, L.: An improved lp-based approximation for steiner tree. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 583–592 (2010)

    Google Scholar 

  5. Chan, T.H.H., Goranci, G., Jiang, S.H.C., Wang, B., Xue, Q.: Fully dynamic algorithms for euclidean steiner tree. CoRR arxiv (2023)

    Google Scholar 

  6. Cheng, X., Du, D.Z.: Steiner trees in industry, vol. 11. Springer Science & Business Media (2013)

    Google Scholar 

  7. Eppstein, D.: Dynamic euclidean minimum spanning trees and extrema of binary functions. Discret. Comput. Geom. 13, 111–122 (1995)

    Article  MathSciNet  Google Scholar 

  8. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)

    Article  MathSciNet  Google Scholar 

  9. Gu, A., Gupta, A., Kumar, A.: The power of deferral: maintaining a constant-competitive steiner tree online. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 525–534 (2013)

    Google Scholar 

  10. Gupta, A., Kumar, A.: Online steiner tree with deletions. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms. pp. 455–467. SIAM (2014)

    Google Scholar 

  11. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in vlsi design. Combinatorial Optimization, pp. 33–96 (2011)

    Google Scholar 

  12. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MathSciNet  Google Scholar 

  13. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the steiner problem in graphs. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–453 (1999)

    Google Scholar 

  14. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992)

    Article  MathSciNet  Google Scholar 

  15. Imase, M., Waxman, B.M.: Dynamic steiner tree problem. SIAM J. Discret. Math. 4(3), 369–384 (1991)

    Article  MathSciNet  Google Scholar 

  16. Karpinski, M., Zelikovsky, A.: New approximation algorithms for the steiner tree problems. J. Comb. Optim. 1, 47–65 (1997)

    Article  MathSciNet  Google Scholar 

  17. Lacki, J., Ocwieja, J., Pilipczuk, M., Sankowski, P., Zych, A.: The power of dynamic distance oracles: efficient dynamic algorithms for the steiner tree. In: STOC, pp. 11–20. ACM (2015)

    Google Scholar 

  18. Matsuyama, A.: An approximate solution for the steiner problem in graphs. Math. Japonica 24, 573–577 (1980)

    MathSciNet  Google Scholar 

  19. Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online mst and tsp. SIAM J. Comput. 45(3), 859–880 (2016)

    Article  MathSciNet  Google Scholar 

  20. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MathSciNet  Google Scholar 

  21. Prömel, H.J., Steger, A.: RNC-approximation algorithms for the steiner problem. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 559–570. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023489

    Chapter  Google Scholar 

  22. Robins, G., Zelikovsky, A.: Tighter bounds for graph steiner tree approximation. SIAM J. Discret. Math. 19(1), 122–134 (2005)

    Article  MathSciNet  Google Scholar 

  23. Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: Steiner trees for terminals constrained to curves. SIAM J. Discret. Math. 10(1), 1–17 (1997)

    Article  MathSciNet  Google Scholar 

  24. Zelikovsky, A.: Better approximation bounds for the network and euclidean steiner tree problems. Tech. rep., Technical Report CS-96-06, Department of Computer Science, University of (1996)

    Google Scholar 

  25. Zelikovsky, A.Z.: An 11/6-approximation algorithm for the network steiner problem. Algorithmica 9, 463–470 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wang or Quan Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chan, TH.H., Goranci, G., Jiang, S.HC., Wang, B., Xue, Q. (2024). Fully Dynamic Algorithms for Euclidean Steiner Tree. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0566-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0565-8

  • Online ISBN: 978-981-97-0566-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics