Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Loss Function for Polyp Detection Problem

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13996))

Included in the following conference series:

  • 334 Accesses

Abstract

The utilization of automatic polyp detection during endoscopy procedures has been shown to be highly advantageous by decreasing the rate of missed detection by endoscopists. In this paper, we propose a new loss function for training an object detector based on the EfficientDet architecture to detect polyp areas in endoscopic images. The proposed loss combines the features of the Focal loss and DIoU (Distance Intersection over Union) loss named as Focal-DIoU. In addition, we have also carried out some experiments to evaluate the proposed loss function. The experimental results show that our proposed model achieves higher accuracy than previous works on two public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, S.H., et al.: An adequate level of training for technical competence in screening and diagnostic colonoscopy: a prospective multicenter evaluation of the learning curve. Gastrointest. Endosc. 67(4), 683–689 (2008)

    Article  Google Scholar 

  2. Leufkens, A., Van Oijen, M., Vleggaar, F., Siersema, P.: Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy 44(05), 470–475 (2012)

    Article  Google Scholar 

  3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Article  Google Scholar 

  4. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  5. Hirasawa, T., et al.: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21(4), 653–660 (2018). https://doi.org/10.1007/s10120-018-0793-2

    Article  Google Scholar 

  6. Gao, Y., et al.: Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer. Chin. Med. J. 132(23), 2804–2811 (2019)

    Article  Google Scholar 

  7. Wu, L., et al.: A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy 51(06), 522–531 (2019)

    Article  Google Scholar 

  8. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  9. Fu, C.Y., Shvets, M., Berg, A.C.: Retinamask: learning to predict masks improves state-of-the-art single-shot detection for free. arXiv preprint arXiv:1901.03353 (2019)

  10. Du, L., Zhang, R., Wang, X.: Overview of two-stage object detection algorithms. J. Phys. Conf. Ser. 1544(1), 012033 (2020)

    Article  Google Scholar 

  11. Wang, X., Song, J.: ICIoU: improved loss based on complete intersection over union for bounding box regression. IEEE Access 9, 105686–105695 (2021)

    Article  Google Scholar 

  12. Puttagunta, M., Ravi, S.: Medical image analysis based on deep learning approach. Multimedia Tools Appl. 80(16), 24365–24398 (2021). https://doi.org/10.1007/s11042-021-10707-4

    Article  Google Scholar 

  13. Zhang, Y.F., Ren, W., Zhang, Z., Jia, Z., Wang, L., Tan, T.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022)

    Article  Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  16. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  17. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 516–520 (2016)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  23. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  24. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  25. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  26. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12993–13000 (2020)

    Google Scholar 

  27. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  28. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  29. Wang, Q., Cheng, J.: LCornerIoU: an improved IoU-based loss function for accurate bounding box regression. In: 2021 International Conference on Intelligent Computing, Automation and Systems (ICICAS), pp. 377–383. IEEE (2021)

    Google Scholar 

  30. Wang, F., Hong, W.: Polyp dataset (2022). https://doi.org/10.6084/m9.figshare.21221579.v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Tuan Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, A.T., Thai, D.S., Trinh, B.A., Vi, B.N., Vu, L. (2023). Improving Loss Function for Polyp Detection Problem. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2023. Lecture Notes in Computer Science(), vol 13996. Springer, Singapore. https://doi.org/10.1007/978-981-99-5837-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5837-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5836-8

  • Online ISBN: 978-981-99-5837-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics