Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Peirce algebras

Published: 01 May 1994 Publication History

Abstract

We present a two-sorted algebra, called aPeirce algebra, of relations and sets interacting with each other. In a Peirce algebra, sets can combine with each other as in a Boolean algebra, relations can combine with each other as in a relation algebra, and in addition we have both a set-forming operator on relations (the Peirce product of Boolean modules) and a relation-forming operator on sets (a cylindrification operation). Two applications of Peirce algebras are given. The first points out that Peirce algebras provide a natural algebraic framework for modelling certain programming constructs. The second shows that the so-calledterminological logics arising in knowledge representation have evolved a semantics best described as a calculus of relations interacting with sets.

References

References

[1]
Blyth T. S. and Janowitz M. F. Residuation Theory 1972 Oxford, England Pergamon Press
[2]
Blikle, A.:MetaSoft Primer, Lecture Notes in Computer Science 288. Springer-Verlag, 1987.
[3]
Böttner M. State transition semantics Theoretical Linguistics 1992 18 2/3 239-286
[4]
Böttner M. Variable-free semantics for anaphora Journal of Philosophical Logic 1992 21 375-390
[5]
Brink C. Boolean modules Journal of Algebra 1981 71 2 291-313
[6]
Brink C. On the application of relations South African Journal of Philosophy 1988 7 2 105-112
[7]
Britz K. Relations and programs Master's thesis 1988 Stellenbosch, South Africa Department of Computer Science, University of Stellenbosch
[8]
Brachman R. J. and Schmolze J. G. An overview of theKl-ONE knowledge representation system Cognitive Science 1985 9 2 171-216
[9]
Brink C. and Schmidt R. A. Subsumption computed algebraically Computers and Mathematics with Applications 1992 23 329-342
[10]
Chin L. H. and Tarski A. Distributive and modular laws in the arithmetic of relation algebras University of California Publications in Mathematics 1951 1 9 341-384
[11]
de Bakker J. W. and de Roever W. P. Nivat M. A calculus for recursive program schemes Symposium on Automata, Formal Languages and Programming 1973 Amsterdam North Holland
[12]
Donini F. M., Lenzerini M., Nardi D., and Nutt W. The complexity of concept languages 1991 San Mateo, California Morgan Kaufmann 151-162
[13]
Harel D. Gabbay D. and Guenthner F. Dynamic logic Handbook of Philosophical Logic, volume II 1984 Dordrecht, Holland Reidel 497-604
[14]
Hennessey M. C. B. A proof system for the first-order relational calculus Journal of Computer and System Sciences 1980 20 96-110
[15]
Hoare C. A. R. and Jifeng He. The weakest prespecification Information Processing Letters 1987 24 127-132
[16]
Hoare C. A. R., Jifeng He, and Sanders J. W. Prespecification in data refinement Information Processing Letters 1987 25 71-76
[17]
Henkin L., Monk J. D., and Tarski A. Cylindric Algebras I volume 64 ofStudies in Logic and the Foundations of Mathematics 1985 Amsterdam North-Holland
[18]
Hollunder, B. Nutt, W. and Schmidt-Schauß. M.: Subsumption algorithms for concept description languages. InProceedings of the 9th European Conference on Artificial Intelligence, pages 348–353, 1990.
[19]
Hitchcock P. and Park D. Nivat M. Induction rules and termination proofs Automata, Languages and Programming 1972 Amsterdam North-Holland
[20]
Jónsson B. Varieties of relation algebras Algebra Universalis 1982 15 273-298
[21]
Jónsson B. and Tarski A. Boolean algebras with operators, Part I American Journal of Mathematics 1951 73 891-939
[22]
Jónsson B. and Tarski A. Boolean algebras with operators, Part II American Journal of Mathematics 1952 74 127-162
[23]
Kozen, D.: A representation theorem for models of *-free PDL. In J. de Bakker and J. van Leeuwen, editors,Automata, Languages and Programming, volume 85 ofLecture Notes in Computer Science, pages 351–36. Springer-Verlag, 1980.
[24]
Kozen, D.: On the duality of dynamic algebras and Kripke models. In E. Engeler, editor,Logic of Programs, volume 125 ofLecture Notes in Computer Science, pages 1–11. Springer-Verlag, 1981.
[25]
Maddux R. D. A sequent calculus for relation algebras Annals of Pure and Applied Logic 1983 25 73-101
[26]
Maddux, R. D. 1990.: Personal communication with C. Brink.
[27]
Orlowska E. Andréka H., Monk J. D., and Németi I. Relational interpretation of modal logic Algebraic Logic 1991 Amsterdam North-Holland 443-471
[28]
Orlowska E. Jorrand Ph. and Kelemen J. Relational proof systems for some AI logics Fundamentals of Artificial Intelligence Research 1991 Berlin Springer-Verlag 33-47
[29]
Parikh, D.: Propositional dynamic logic of programs: A survey. In E. Engeler, editor,Logic of Programs, volume 125 ofLecture Notes in Computer Science, pages 102–144. Springer-Verlag, 1981.
[30]
Pratt, V. R.: Dynamic algebras as a well-behaved fragment of relation algebras. In C. H. Bergman, R. D. Maddux, and D. L. Pigozzi, editors,Algebraic Logic and Universal Algebra in Computer Science, volume 425 ofLecture Notes in Computer Science, pages 77–110. Springer-Verlag, 1990.
[31]
Pretorius J. P. G. The algebra and topology of Boolean modules Master's thesis 1990 Cape Town, South Africa Department of Mathematics, University of Cape Town
[32]
Patel-Schneider, P. F.:Decidable, Logic-Based Knowledge Representation. PhD thesis, University of Toronto, 1987.
[33]
Patel-Schneider P. F. A four-valued semantics for terminological logics Artificial Intelligence 1989 38 319-351
[34]
Sanderson, J. G.:A Relational Theory of Computing, volume 82 ofLecture Notes in Computer Science. Springer-Verlag, 1981.
[35]
Schmidt R. A. Algebraic terminological representation Master's thesis 1991 Cape Town, South Africa Department of Mathematics, University of Cape Town
[36]
Schmidt R. A. Ohlbach H. J. Terminological representation, natural language & relation algebra Lecture Notes in Artificial Intelligence 1993 Berlin Springer-Verlag 357-371
[37]
Schmolze J. G. and Mark W. S. The NIKL experience Computational Intelligence 1991 6 48-69
[38]
Schmidt G. and Ströhlein T. Relations and Graphs 1993 Berlin-Heidelberg Springer-Verlag
[39]
Schmidt-Schauß M. and Smolka G. Attributive concept description with complement Artificial Intelligence 1991 48 1-26
[40]
Suppes P. Elimination of quantifiers in the semantics of natural language by use of extended relation algebra Revue Internationale de Philosophie 1976 30 243-259
[41]
Suppes P. Saarinen E., Hilpinen R., Niiniluoto I., and Hintikka M. P. Variable-free semantics for negations with prosodic variation Essays in Honour of Jaakko Hintikka 1979 Dordrecht, Holland Reidel 49-59
[42]
Suppes P. Direct inference in English Teaching Philosophy 1981 4 405-418
[43]
Tarski A. On the calculus of relations Journal of Symbolic Logic 1941 6 73-89
[44]
Tarski A. Contributions to the theory of models, Part III Indagationes Mathematicae 1955 17 56-64
[45]
University of Amsterdam.Logic at Work, Proceedings of the Applied Logic Conference, Amsterdam, The Netherlands, December 1992. Preprint. To appear.
[46]
van Benthem J. Logic and the flow of information 1991 Amsterdam, The Netherlands Institute for Logic, Language and Computation, University of Amsterdam
[47]
van Benthem J. A note on dynamic arrow logic 1992 Amsterdam, The Netherlands Institute for Language, Logic and Computation, University of Amsterdam
[48]
Venema Y. Many-Dimensional Modal Logic PhD thesis 1992 Amsterdam, The Netherlands University of Amsterdam
[49]
Wadge, W. W.: A complete natural deduction system for the relational calculus. Theory of Computation Report, University of Warwick, 1975.
[50]
Woods W. A. and Schmolze J. G. TheKl-one family Computers and Mathematics with Applications 1992 23 133-177

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Formal Aspects of Computing
Formal Aspects of Computing  Volume 6, Issue 3
May 1994
112 pages
ISSN:0934-5043
EISSN:1433-299X
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 May 1994
Accepted: 15 April 1993
Received: 15 March 1992
Published in FAC Volume 6, Issue 3

Author Tags

  1. Boolean modules
  2. Relation algebras
  3. Terminological logics
  4. Weakest prespecifications

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)37
  • Downloads (Last 6 weeks)9
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2021)A Framework for the Approximation of RelationsIntelligence Science III10.1007/978-3-030-74826-5_5(49-65)Online publication date: 15-Apr-2021
  • (2014)5.2.1 Systems Engineering and the Semantic WebINCOSE International Symposium10.1002/j.2334-5837.2003.tb02617.x13:1(289-300)Online publication date: 4-Nov-2014
  • (2013)First-Order Resolution Methods for Modal LogicsProgramming Logics10.1007/978-3-642-37651-1_15(345-391)Online publication date: 2013
  • (2013)Diagrammatic Reasoning with Classes and RelationshipsVisual Reasoning with Diagrams10.1007/978-3-0348-0600-8_6(83-100)Online publication date: 2013
  • (2011)Regular relations for temporal propositionsNatural Language Engineering10.1017/S135132491100009X17:2(163-184)Online publication date: 1-Apr-2011
  • (2011)Querying Class-Relationship Logic in a Metalogic FrameworkFlexible Query Answering Systems10.1007/978-3-642-24764-4_9(96-107)Online publication date: 2011
  • (2011)Synthesising Terminating Tableau Calculi for Relational LogicsRelational and Algebraic Methods in Computer Science10.1007/978-3-642-21070-9_3(40-49)Online publication date: 2011
  • (2011)Congruences and ideals on Boolean modulesMathematical Logic Quarterly10.1002/malq.20102005757:6(571-581)Online publication date: 4-Oct-2011
  • (2009)Ontological semantics in modified categorial grammar2009 International Multiconference on Computer Science and Information Technology10.1109/IMCSIT.2009.5352712(295-298)Online publication date: Oct-2009
  • (2009)A new methodology for developing deduction methodsAnnals of Mathematics and Artificial Intelligence10.1007/s10472-009-9155-455:1-2(155-187)Online publication date: 1-Feb-2009
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media