Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Forecasting the efficiency of test generation algorithms for combinational circuits

  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In this era of VLSI circuits, testability is truly a very crucial issue. To generate a test set for a given circuit, choice of an algorithm from a number of existing test generation algorithms to apply is bound to vary from circuit to circuit. In this paper, the Genetic Algorithm is used in order to construct an accurate model for some existing test generation algorithms that are being used everywhere in the world. Some objective quantitative measures are used as an effective tool in making such choice. Such measures are so important to the analysis of algorithms that they become one of the subjects of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Johnson B W. Design and Analysis of Fault-Tolerant Digital Systems. Reading, Mass.: Addison-Wesley Pub. Co., 1989.

    Google Scholar 

  2. Roth J P. Diagnosis of automata failures: A calculus and a method.IBM Journal of Research and Development, July 1966, 10(4): 278–291.

    MATH  Google Scholar 

  3. Roth J P, Bouricius W G, Schneider P R. Programmed algorithms to compute tests to detect and distinguish between failures in logic circuits.IEEE Trans. Electronic Computers, October 1967, EC-16(10): 567–579.

    Article  MathSciNet  Google Scholar 

  4. Abramovici M, Breuer M A, Friedman A D. Digital Systems Testing and Testable Design. Computer Science Press, 1990.

  5. Schneider P R. On the necessity to examine D-chains in diagnostic test generation.IBM Journal of Research and Development, January 1967, 11(1): 14.

    Article  Google Scholar 

  6. Goel P. An implicit enumeration algorithm to generate tests for combinational logic circuits.IEEE Trans. Computers, March 1981, C-30(3): 215–222.

    Article  MATH  MathSciNet  Google Scholar 

  7. Fujiwara H, Shimono T. On the acceleration of test generation algorithms.IEEE Trans. Computers, December 1983, C-32(12): 1137–1144.

    Article  Google Scholar 

  8. Cha C W, Donath W E, Ozguner F. 9-V algorithm for test pattern generation of combinational digital circuits.IEEE Trans. Computers, March 1978, C-27(3): 193–200.

    Article  Google Scholar 

  9. Muth P. A nine-valued circuit model for test generation.IEEE Trans. Computers, June 1976, C-25(6): 630–636.

    Article  MATH  Google Scholar 

  10. Kirkland T, Mercer M R. A topological search algorithm for ATPG. InProc. 24th Design Automation Conf., June 1987, pp.502–508.

  11. Abramovici M, Kulikowski J J, Menon P R, Miller D T. SMART and FAST: Test generation for VLSI scan-design circuits.IEEE Design & Test of Computers, Aug. 1986, 3(4): 43–54.

    Article  Google Scholar 

  12. Xu Shiyi, Frank T J. An evaluation of test generation algorithms for combinational circuits. InProc. IEEE the Eighth Asian Test Symposium, Nov. 1999, pp.63–69.

  13. Xi Shiyi, Dias G P. Testability forecasting for sequential circuit. InProc. IEEE the Fourth Asian Test Symposium, Nov. 1995, pp.199–205.

  14. Hu Yang. Testability Forecasting for Combinational Circuits Using Neural Networks. Master’s Degree Thesis, Shanghai University, 1997.

  15. Xu Shiyi, Peter Waiganjo, Dias G P. Testability prediction for sequential circuits using neural networks. InProc. IEEE the Sixth Asian Test Symposium, Nov. 1997, pp.126–132.

  16. Mahfoud S, Mani G. Financial forecasting using genetic algorithms.Applied Artificial Intelligence, 1996, 10(6): 543–565.

    Article  Google Scholar 

  17. Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Programs. Berlin: Springer-Verlag, 1994.

    MATH  Google Scholar 

  18. Russell S J, Norvig P. Artificial Intelligence: A Modern Approach. Englewood Cliffs, N.J.: Prentice Hall Inc., 1995, pp.619–620.

    MATH  Google Scholar 

  19. Welstead S T. Neural Network and Fuzzy Logic Applications in C/C++. New York: John Wiley & Sons Inc., 1994, pp.283–304.

    Google Scholar 

  20. Schwefel H-P. Numerical Optimization for Computer Models. John Wiley, Chichester, UK, 1981.

    Google Scholar 

  21. Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution. John Wiley, Chichester, UK, 1966.

    MATH  Google Scholar 

  22. Glover F. Heuristics for integer programming using surrogate constraints.Decision Sciences, 1977, 8(1): 156–166.

    Article  Google Scholar 

  23. Holland J H. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975.

    Google Scholar 

  24. Koza J R. Genetic Programming. MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  25. Brglez F, Fujiwara H. A Neural Netlist of 10 Combinational Benchmark Circuits and a Target Translator in FORTRAN. International Test Symposium on Circuits and Systems, June 1985.

  26. The Bipolar Digital Integrated circuits Data Book for Design Engineers, pt.i: TTL & Interface Instruments.-Dallas: Texas Instruments Inc., 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Shiyi.

Additional information

This work was supported by National Natural Science Foundation of China (NSFC) under grant No.69873030 and AM (Applied Material Co.) Foundation of the United States.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Frank, T.J. Forecasting the efficiency of test generation algorithms for combinational circuits. J. Comput. Sci. & Technol. 15, 326–337 (2000). https://doi.org/10.1007/BF02948868

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02948868

Keywords