Abstract
Following arXiv:1907.04737, we continue our investigation of the relation between the renormalizability (with finitely many couplings) and integrability in 2d σ- models. We focus on the “λ-model,” an integrable model associated to a group or symmetric space and containing as special limits a (gauged) WZW model and an “interpolating model” for non-abelian duality. The parameters are the WZ level k and the coupling λ, and the fields are g, valued in a group G, and a 2d vector A± in the corresponding algebra. We formulate the λ-model as a σ-model on an extended G × G × G configuration space (g, h,\( \overline{h} \)), defining h and \( \overline{h} \) by A+ = h∂+h−1, A_ = \( \overline{h} \)∂−\( \overline{h} \)−1. Our central observation is that the model on this extended configuration space is renormalizable without any deformation, with only λ running. This is in contrast to the standard σ-model found by integrating out A±, whose 2-loop renormalizability is only obtained after the addition of specific finite local counterterms, resulting in a quantum deformation of the target space geometry. We compute the 2-loop β-function of the λ-model for general group and symmetric spaces, and illustrate our results on the examples of SU(2)/U(1) and SU(2). Similar conclusions apply in the non-abelian dual limit implying that non-abelian duality commutes with the RG flow. We also find the 2-loop β-function of a “squashed” principal chiral model.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
V.A. Fateev, E. Onofri and A.B. Zamolodchikov, Integrable deformations of O(3) sigma model. The sausage model, Nucl. Phys.B 406 (1993) 521 [INSPIRE].
V.A. Fateev, The sigma model (dual) representation for a two-parameter family of integrable quantum field theories, Nucl. Phys.B 473 (1996) 509 [INSPIRE].
S.L. Lukyanov, The integrable harmonic map problem versus Ricci flow, Nucl. Phys.B 865 (2012) 308 [arXiv:1205.3201] [INSPIRE].
V. Fateev, Classical and quantum integrable sigma models. Ricci flow, “nice duality” and perturbed rational conformal field theories, arXiv:1902.02811 [INSPIRE].
V.A. Fateev and A.V. Litvinov, Integrability, Duality and Sigma Models, JHEP11 (2018) 204 [arXiv:1804.03399] [INSPIRE].
A.V. Litvinov and L.A. Spodyneiko, On dual description of the deformed O(N ) sigma model, JHEP11 (2018) 139 [arXiv:1804.07084] [INSPIRE].
B. Hoare, N. Levine and A.A. Tseytlin, Integrable 2d sigma models: quantum corrections to geometry from RG flow, Nucl. Phys.B 949 (2019) 114798 [arXiv:1907.04737] [INSPIRE].
K. Sfetsos, Integrable interpolations: From exact CFTs to non-abelian T-duals, Nucl. Phys.B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].
T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, Integrable Deformations of Strings on Symmetric Spaces, JHEP11 (2014) 009 [arXiv:1407.2840] [INSPIRE].
K. Sfetsos and A.A. Tseytlin, Chiral gauged WZNW models and heterotic string backgrounds, Nucl. Phys.B 415 (1994) 116 [hep-th/9308018] [INSPIRE].
K. Sfetsos and A.A. Tseytlin, Antisymmetric tensor coupling and conformal invariance in sigma models corresponding to gauged WZNW theories, Phys. Rev.D 49 (1994) 2933 [hep-th/9310159] [INSPIRE].
A.A. Tseytlin, On a ‘universal’ class of WZW type conformal models, Nucl. Phys.B 418 (1994) 173 [hep-th/9311062] [INSPIRE].
S.-w. Chung and S.H.H. Tye, Chiral gauged WZW theories and coset models in conformal field theory, Phys. Rev.D 47 (1993) 4546 [hep-th/9202002] [INSPIRE].
G. Itsios, K. Sfetsos and K. Siampos, The all-loop non-abelian Thirring model and its RG flow, Phys. Lett.B 733 (2014) 265 [arXiv:1404.3748] [INSPIRE].
B. Hoare and A.A. Tseytlin, On integrable deformations of superstring sigma models related to AdSn× Snsupercosets, Nucl. Phys.B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].
D. Kutasov, Duality Off the Critical Point in Two-dimensional Systems With Non-abelian Symmetries, Phys. Lett.B 233 (1989) 369 [INSPIRE].
A. Subbotin and I.V. Tyutin, On the equivalence of dual theories, Int. J. Mod. Phys.A 11 (1996) 1315 [Erratum ibid.A 11 (1996) 2231][hep-th/9506132] [INSPIRE].
L.K. Balazs, J. Balog, P. Forgacs, N. Mohammedi, L. Palla and J. Schnittger, Quantum equivalence of sigma models related by non-abelian duality transformations, Phys. Rev.D 57 (1998) 3585 [hep-th/9704137] [INSPIRE].
G. Bonneau and P.-Y. Casteill, Dualized sigma models at the two loop order, Nucl. Phys.B 607 (2001) 293 [hep-th/0103260] [INSPIRE].
J. Balog, P. Forgacs, Z. Horvath and L. Palla, Perturbative quantum (in)equivalence of dual sigma models in two-dimensions, Nucl. Phys. Proc. Suppl.49 (1996) 16 [hep-th/9601091] [INSPIRE].
D.H. Friedan, Nonlinear Models in Two + Epsilon Dimensions, Annals Phys.163 (1985) 318 [INSPIRE].
E. Braaten, T.L. Curtright and C.K. Zachos, Torsion and Geometrostasis in Nonlinear Sigma Models, Nucl. Phys.B 260 (1985) 630 [Erratum ibid.B 266 (1986) 748] [INSPIRE].
R.R. Metsaev and A.A. Tseytlin, Order alpha-prime (two loop) equivalence of the string equations of motion and the sigma model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys.B 293 (1987) 385 [INSPIRE].
R.R. Metsaev and A.A. Tseytlin, Two loop beta function for the generalized bosonic sigma model, Phys. Lett.B 191 (1987) 354 [INSPIRE].
C.M. Hull and P.K. Townsend, The Two Loop Beta Function for σ Models With Torsion, Phys. Lett.B 191 (1987) 115 [INSPIRE].
D. Zanon, Two Loop Beta Functions and Low-energy String Effective Action for the Two-dimensional Bosonic Nonlinear σ Model With a Wess-Zumino-Witten Term, Phys. Lett.B 191 (1987) 363 [INSPIRE].
N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys.99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \( \mathcal{N} \) = 4 Super-Yang-Mills Theory, Phys. Rev. Lett.112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].
K. Zarembo, Strings on Semisymmetric Superspaces, JHEP05 (2010) 002 [arXiv:1003.0465] [INSPIRE].
L. Wulff, Superisometries and integrability of superstrings, JHEP05 (2014) 115 [arXiv:1402.3122] [INSPIRE].
O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP05 (2005) 033 [hep-th/0502086] [INSPIRE].
S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal deformations of \( \mathcal{N} \) = 4 super Yang-Mills theory, JHEP07 (2005) 045 [hep-th/0503192] [INSPIRE].
S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP05 (2005) 069 [hep-th/0503201] [INSPIRE].
T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the AdS5× S5Superstring, J. Phys.A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].
F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5× S5superstring action, Phys. Rev. Lett.112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].
C. Klimčík, Yang-Baxter sigma models and dS/AdS T duality, JHEP12 (2002) 051 [hep-th/0210095] [INSPIRE].
F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable sigma-models, JHEP11 (2013) 192 [arXiv:1308.3581] [INSPIRE].
C. Klimčík and P. Ševera, Dual non-Abelian duality and the Drinfeld double, Phys. Lett.B 351 (1995) 455 [hep-th/9502122] [INSPIRE].
C. Klimčík, Poisson-Lie T-duality, Nucl. Phys. Proc. Suppl.46 (1996) 116 [hep-th/9509095] [INSPIRE].
B. Vicedo, Deformed integrable σ-models, classical R-matrices and classical exchange algebra on Drinfel’d doubles, J. Phys.A 48 (2015) 355203 [arXiv:1504.06303] [INSPIRE].
K. Sfetsos, K. Siampos and D.C. Thompson, Generalised integrable λ- and η-deformations and their relation, Nucl. Phys.B 899 (2015) 489 [arXiv:1506.05784] [INSPIRE].
C. Klimćík, η and λ deformations as E-models, Nucl. Phys.B 900 (2015) 259 [arXiv:1508.05832] [INSPIRE].
B. Hoare and F.K. Seibold, Poisson-Lie duals of the η deformed symmetric space sigma model, JHEP11 (2017) 014 [arXiv:1709.01448] [INSPIRE].
R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP10 (2016) 045 [arXiv:1608.03570] [INSPIRE].
B. Hoare and F.K. Seibold, Supergravity backgrounds of the η-deformed AdS2× S2× T6and AdS5× S5superstrings, JHEP01 (2019) 125 [arXiv:1811.07841] [INSPIRE].
A.M. Polyakov and P.B. Wiegmann, Theory of Nonabelian Goldstone Bosons, Phys. Lett.131B (1983) 121 [INSPIRE].
A.M. Polyakov, Two-dimensional quantum gravity: Superconductivity at high Tc, in: Fields, Strings and Critical Phenomena, Proc. of Les Houches 1988, eds.: E. Brézin and J. Zinn-Justin, North-Holland (1990).
E. Guadagnini, M. Martellini and M. Mintchev, Scale Invariance Sigma Models On Homogeneous Spaces, Phys. Lett.B 194 (1987) 69 [INSPIRE].
O.A. Solovev, Towards conversion of the space of Thirring models into the model space for groups, Phys. Lett.B 309 (1993) 275 [INSPIRE].
C.M. Hull and O.A. Solovev, Conformal points and duality of non-abelian Thirring Models and interacting WZNW models, Nucl. Phys.B 459 (1996) 243 [hep-th/9503021] [INSPIRE].
G. Georgiou and K. Sfetsos, A new class of integrable deformations of CFTs, JHEP03 (2017) 083 [arXiv:1612.05012] [INSPIRE].
G. Georgiou, E. Sagkrioti, K. Sfetsos and K. Siampos, Quantum aspects of doubly deformed CFTs, Nucl. Phys.B 919 (2017) 504 [arXiv:1703.00462] [INSPIRE].
G. Georgiou, K. Sfetsos and K. Siampos, Double and cyclic λ-deformations and their canonical equivalents, Phys. Lett.B 771 (2017) 576 [arXiv:1704.07834] [INSPIRE].
G. Georgiou and K. Sfetsos, Integrable flows between exact CFTs, JHEP11 (2017) 078 [arXiv:1707.05149] [INSPIRE].
B. Gerganov, A. LeClair and M. Moriconi, On the beta function for anisotropic current interactions in 2-D, Phys. Rev. Lett.86 (2001) 4753 [hep-th/0011189] [INSPIRE].
A. LeClair, Chiral stabilization of the renormalization group for flavor and color anisotropic current interactions, Phys. Lett.B 519 (2001) 183 [hep-th/0105092] [INSPIRE].
K. Sfetsos and K. Siampos, Gauged WZW-type theories and the all-loop anisotropic non-abelian Thirring model, Nucl. Phys.B 885 (2014) 583 [arXiv:1405.7803] [INSPIRE].
C. Appadu and T.J. Hollowood, Beta function of k deformed AdS5× S5string theory, JHEP11 (2015) 095 [arXiv:1507.05420] [INSPIRE].
E. Witten, Non-abelian Bosonization in Two Dimensions, Commun. Math. Phys.92 (1984) 455 [INSPIRE].
M. Bos, Dimensional Regularization in the Wess-Zumino-Witten Model, Phys. Lett.B 189 (1987) 435 [INSPIRE].
A. McKane and M. Stone, Nonlinear sigma models: a perturbative approach to symmetry restoration, Nucl. Phys.B 163 (1980) 169 [INSPIRE].
S. Hikami, Three Loop Beta-Functions of Nonlinear Sigma Models on Symmetric Spaces, Phys. Lett.98B (1981) 208 [INSPIRE].
B.E. Fridling and A. Jevicki, Dual Representations and Ultraviolet Divergences in Nonlinear σ Models, Phys. Lett.134B (1984) 70 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Quantum Equivalence of Dual Field Theories, Annals Phys.162 (1985) 31 [INSPIRE].
E. Brézin and J. Zinn-Justin, Renormalization of the nonlinear σ model in 2 + 𝜖 dimensions. Application to the Heisenberg ferromagnets, Phys. Rev. Lett.36 (1976) 691 [INSPIRE].
S. Hikami and E. Brézin, Three Loop Calculations in the Two-Dimensional Nonlinear Sigma Model, J. Phys.A 11 (1978) 1141 [INSPIRE].
E. Brézin, S. Hikami and J. Zinn-Justin, Generalized Nonlinear σ Models With Gauge Invariance, Nucl. Phys.B 165 (1980) 528 [INSPIRE].
A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys.B 399 (1993) 691 [hep-th/9210015] [INSPIRE].
I. Kawaguchi and K. Yoshida, Hidden Yangian symmetry in sigma model on squashed sphere, JHEP11 (2010) 032 [arXiv:1008.0776] [INSPIRE].
N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev.D 56 (1997) 7940 [hep-th/9705193] [INSPIRE].
S. Parsons, T duality and conformal invariance at two loops, Phys. Rev.D 61 (2000) 086002 [hep-th/9912105] [INSPIRE].
I. Jack and S. Parsons, O(d, d) invariance at two loops and three loops, Phys. Rev.D 62 (2000) 026003 [hep-th/9911064] [INSPIRE].
A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys.B 350 (1991) 395 [INSPIRE].
M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions, Phys. Rev.D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].
E. Abdalla, M.C.B. Abdalla and M. Gomes, Anomaly in the Nonlocal Quantum Charge of the ℂPn−1Model, Phys. Rev.D 23 (1981) 1080.
E. Abdalla, M. Forger and M. Gomes, On the Origin of Anomalies in the Quantum Nonlocal Charge for the Generalized Nonlinear σ Models, Nucl. Phys.B 210 (1982) 181 [INSPIRE].
J.M. Evans, D. Kagan and C.A.S. Young, Nonlocal charges and quantum integrability of sigma models on the symmetric spaces SO(2n)/SO(n) × SO(n) and Sp(2n)/Sp(n) × Sp(n), Phys. Lett.B 597 (2004) 112 [hep-th/0404003] [INSPIRE].
J.M. Evans, D. Kagan, N.J. MacKay and C.A.S. Young, Quantum, higher-spin, local charges in symmetric space sigma models, JHEP01 (2005) 020 [hep-th/0408244] [INSPIRE].
A.V. Litvinov, Integrable 𝔤𝔩(n|n) Toda field theory and its sigma-model dual, arXiv:1901.04799 [INSPIRE].
D. Bykov, The worldsheet low-energy limit of the AdS4× ℂP3superstring, Nucl. Phys.B 838 (2010) 47 [arXiv:1003.2199] [INSPIRE].
B. Basso and A. Rej, On the integrability of two-dimensional models with U(1) × SU(N) symmetry, Nucl. Phys.B 866 (2013) 337 [arXiv:1207.0413] [INSPIRE].
M. Gomes, E. Abdalla and M.C.B. Abdalla, On the Nonlocal Charge of the CP(N −1)Model and Its Supersymmetric Extension to All Orders, Phys. Rev.D 27 (1983) 825 [INSPIRE].
D. Kagan and C.A.S. Young, Conformal sigma-models on supercoset targets, Nucl. Phys.B 745 (2006) 109 [hep-th/0512250] [INSPIRE].
A. Babichenko, Conformal invariance and quantum integrability of sigma models on symmetric superspaces, Phys. Lett.B 648 (2007) 254 [hep-th/0611214] [INSPIRE].
R. Gilmore, Lie Algebras and Some of Their Applications, Dover, (2005).
A. Salam and J.A. Strathdee, On Kaluza-Klein Theory, Annals Phys.141 (1982) 316 [INSPIRE].
L. Castellani, On G/H geometry and its use in M theory compactifications, Annals Phys.287 (2001) 1 [hep-th/9912277] [INSPIRE].
G. Bonneau, G. Valent and F. Delduc, Renormalization Properties Of Bosonic Nonlinear Sigma Models Built On Compact Homogeneous Kahler Manifolds, Phys. Lett.B 196 (1987) 456 [INSPIRE].
C. Becchi, A. Blasi, G. Bonneau, R. Collina and F. Delduc, Renormalizability and Infrared Finiteness of Nonlinear σ Models: A Regularization Independent Analysis for Compact Coset Spaces, Commun. Math. Phys.120 (1988) 121 [INSPIRE].
A.V. Bratchikov, Renormalization properties of two-dimensional homogeneous symplectic sigma models, Mod. Phys. Lett.A 7 (1992) 2229 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1910.00397
Arkady A. Tseytlin also at the Institute of Theoretical and Mathematical Physics, MSU and Lebedev Institute, Moscow.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Hoare, B., Levine, N. & Tseytlin, A.A. Integrable sigma models and 2-loop RG flow. J. High Energ. Phys. 2019, 146 (2019). https://doi.org/10.1007/JHEP12(2019)146
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2019)146