Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Novel Double-Dispersion Models Based on Power-Law Filters

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Novel double-dispersion models based on power-law filters are introduced in this work. These models are based on standard first-order and/or second-order low-pass filter transfer functions (denoted as mother functions) and do not require the employment of the fractional-order Laplacian operator. An attractive benefit, from the flexibility point of view, is that the number of parameters, which must be determined via optimization routines, depends on the selected combinations of mother filters. The validity of the proposed models is verified through fitting experimental bio-impedance data of fruit samples measured within a two-day period of time. The accuracy of the proposed models is compared with the classical double-dispersion Cole–Cole model for the same data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A.M. AbdelAty, A.S. Elwakil, A.G. Radwan, C. Psychalinos, B. Maundy, Approximation of the fractional-order Laplacian s\(^{\alpha }\) as a weighted sum of first-order high-pass filters. IEEE Trans. Circuits Syst. II Express Br. 65(8), 1114–1118 (2018)

    Article  Google Scholar 

  2. P. Åberg, U. Birgersson, P. Elsner, P. Mohr, S. Ollmar, Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp. Dermatol. 20(8), 648–652 (2011)

    Article  Google Scholar 

  3. A. AboBakr, L.A. Said, A.H. Madian, A.S. Elwakil, A.G. Radwan, Experimental comparison of integer/fractional-order electrical models of plant. AEU-Int. J. Electron. Commun. 80, 1–9 (2017)

    Article  Google Scholar 

  4. A.A. Al-Ali, A.S. Elwakil, B.J., Maundy, Bio-impedance measurements with phase extraction using the Kramers-Kronig transform: Application to strawberry aging, in IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) pp. 468–471 (2018). https://doi.org/10.1109/MWSCAS.2018.8623938

  5. A.A. Al-Ali, A.S. Elwakil, B.J. Maundy, T.J. Freeborn, Extraction of phase information from magnitude-only bio-impedance measurements using a modified Kramers–Kronig transform. Circuits Syst. Signal Process. 37(8), 3635–3650 (2018)

    Article  MathSciNet  Google Scholar 

  6. K. Barbé, Measurement of Cole–Davidson diffusion through Padé approximations for (bio)impedance spectroscopy. IEEE Trans. Instrum. Meas. 69(1), 301–310 (2020). https://doi.org/10.1109/TIM.2019.2890946

  7. K. Baxevanaki, S. Kapoulea, C. Psychalinos, A.S. Elwakil, Electronically tunable fractional-order highpass filter for phantom electroencephalographic system model implementation. AEU Int. J. Electron. Commun. 110, 152850 (2019)

    Article  Google Scholar 

  8. P. Bertsias, C. Psychalinos, B.J. Maundy, A.S. Elwakil, A.G. Radwan, Partial fraction expansion-based realizations of fractional-order differentiators and integrators using active filters. Int. J. Circuit Theory Appl. 47(4), 513–531 (2019)

    Article  Google Scholar 

  9. K. Biswas, G. Bohannan, R. Caponetto, A.M. Lopes, J.A.T. Machado, Fractional-Order Devices (Springer, Berlin, 2017)

    Book  Google Scholar 

  10. D. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical impedance spectroscopy study of biological tissues. J. Electrost. 66(3–4), 165–177 (2008)

    Article  Google Scholar 

  11. T.J. Freeborn, B. Maundy, A.S. Elwakil, Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med. Biol. Eng. Comput. 52(9), 749–758 (2014)

    Article  Google Scholar 

  12. S. Havriliak, S. Negami, A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J. Polym. Sci. Part C Polym. Symp. 14, 99–117 (1966)

    Article  Google Scholar 

  13. R.A. Kalgaonkar, S. Nandi, S.S. Tambe, J.P. Jog, Analysis of viscoelastic behavior and dynamic mechanical relaxation of copolyester based layered silicate nanocomposites using Havriliak–Negami model. J. Polym. Sci. Part B Polym. Phys. 42(14), 2657–2666 (2004)

    Article  Google Scholar 

  14. S. Kapoulea, C. Psychalinos, A.S. Elwakil, Power law filters: a new class of fractional-order filters without a fractional-order Laplacian operator. AEU Int. J. Electron. Commun. 129, 153537 (2020)

    Article  Google Scholar 

  15. B. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  Google Scholar 

  16. A. Lasia, Electrochemical impedance spectroscopy and its applications, in Mod. Asp. Electrochem., ed. by J.O. Bockris, B.E. Conway, R.E. White (Springer, US, 2002), pp. 143–248

    Chapter  Google Scholar 

  17. J.S. Lee, J.S. Lee, A superior description of AC behavior in polycrystalline solid electrolytes with current-constriction effects. J. Korean Ceram. Soc. 53(2), 150–161 (2016)

    Article  Google Scholar 

  18. A.M. Lopes, J.T. Machado, Modeling vegetable fractals by means of fractional-order equations. J. Vib. Control 22(8), 2100–2108 (2016)

    Article  Google Scholar 

  19. J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications. History 1(8), 1–13 (2005)

    Google Scholar 

  20. M. Mohsen, L.A. Said, A.H. Madian, A.G. Radwan, A.S. Elwakil, Fractional-order bio-impedance modeling for interdisciplinary applications: a review. IEEE Access 9, 33158–33168 (2021). https://doi.org/10.1109/ACCESS.2021.3059963

    Article  Google Scholar 

  21. J.C. M’Peko, D.L. Reis, J.E. De Souza, A.R. Caires, Evaluation of the dielectric properties of biodiesel fuels produced from different vegetable oil feedstocks through electrochemical impedance spectroscopy. Int. J. Hydrog. Energy 38(22), 9355–9359 (2013)

    Article  Google Scholar 

  22. M. Newville, T. Stensitzki, D.B. Allen, M. Rawlik, A. Ingargiola, A. Nelson, LMFIT: non-linear least-square minimization and curve-fitting for Python. Astrophys. Source Code Libr. pp. ascl–1606 (2016)

  23. M. Orzyłowski, M. Lewandowski, Computer modeling of supercapacitor with Cole–Cole relaxation model. J. Appl. Comput. Sci. Methods 5 (2013)

  24. T. Rybicki, I. Karbownik, Analysis of fractional-order models of polyaniline doped polyacrylonitrile fibres impedances’ (PAN/PANI). Sci. Rep. 10(1), 1–14 (2020)

    Article  Google Scholar 

  25. L. Sommacal, P. Melchior, R. Malti, A. Oustaloup, Synthesis of Havriliak–Negami functions for time-domain system identification. IFAC Proc. 41(2), 14283–14288 (2008)

    Article  Google Scholar 

  26. C. Trainito, O. Français, B. Le Pioufle, Analysis of pulsed electric field effects on cellular tissue with Cole–Cole model: monitoring permeabilization under inhomogeneous electrical field with bioimpedance parameter variations. Innov. Food Sci. Emerg. Technol. 29, 193–200 (2015)

    Article  Google Scholar 

  27. G. Tsirimokou, C. Psychalinos, A.S. Elwakil, Fractional-order electronically controlled generalized filters. Int. J. Circuit Theory Appl. 45(5), 595–612 (2017)

    Article  Google Scholar 

  28. S. Victor, P. Melchior, M. Pellet, A. Oustaloup, Lung thermal transfer system identification with fractional models. IEEE Trans. Control Syst. Technol. 28(1), 172–182 (2020)

    Article  Google Scholar 

  29. A. Volkov, G. Koposov, R. Perfil’ev, A. Tyagunin, Analysis of experimental results by the Havriliak–Negami model in dielectric spectroscopy. Opt. Spectrosc. 124(2), 202–205 (2018)

    Article  Google Scholar 

  30. C. Yao, Y. Zhao, H. Liu, S. Dong, Y. Lv, J. Ma, Dielectric variations of potato induced by irreversible electroporation under different pulses based on the Cole–Cole model. IEEE Trans. Dielectr. Electr. Insul. 24(4), 2225–2233 (2017). https://doi.org/10.1109/TDEI.2017.006305

    Article  Google Scholar 

  31. D. Yousri, A.M. AbdelAty, L.A. Said, A. Elwakil, B. Maundy, A.G. Radwan, Chaotic flower pollination and Grey Wolf algorithms for parameter extraction of bio-impedance models. Appl. Soft Comput. 75, 750–774 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Psychalinos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “ Human Resources Development, Education and Lifelong Learning” in the context of the project “ Strengthening Human Resources Research Potential via Doctorate Research-2nd Cycle” (MIS-5000432), implemented by the State Scholarships Foundation (IKY).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoulea, S., Elwakil, A.S., Psychalinos, C. et al. Novel Double-Dispersion Models Based on Power-Law Filters. Circuits Syst Signal Process 40, 5799–5812 (2021). https://doi.org/10.1007/s00034-021-01755-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01755-0

Keywords