Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing clique and chromatic number of circular-perfect graphs in polynomial time

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel et al. in Combinatorica 1(2):169–197, 1981). Perfect graphs have the key property that clique and chromatic number coincide for all induced subgraphs; we address the question whether the algorithmic results for perfect graphs can be extended to graph classes where the chromatic number of all members is bounded by the clique number plus one. We consider a well-studied superclass of perfect graphs satisfying this property, the circular-perfect graphs, and show that for such graphs both clique and chromatic number are computable in polynomial time as well. In addition, we discuss the polynomial time computability of further graph parameters for certain subclasses of circular-perfect graphs. All the results strongly rely upon Lovász’s Theta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachoc, C., Pêcher, A., Thierry A.: On the theta number of powers of cycle graphs. arXiv:1103.0444 (submitted, 2011)

  2. Bang-Jensen J., Huang J.: Convex-round graphs are circular-perfect. J. Graph Theory 40, 182–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondy J.A., Hell P.: A note on the star chromatic number. J. Graph Theory 14, 479–482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvátal V.: On certain polytopes associated with graphs. J. Comb. Theory B 18, 138–154 (1975)

    Article  MATH  Google Scholar 

  5. Coulonges S., Pêcher A., Wagler A.: Triangle-free strongly circular-perfect graphs. Discret. Math. 309, 3632–3643 (2009)

    Article  MATH  Google Scholar 

  6. Deuber W., Zhu X.: Circular coloring of weighted graphs. J. Graph Theory 23, 365–376 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey M.R., Johnson D.S., Stockmeyer L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grötschel M., Lovász L., Schrijver A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Topics on Perfect Graphs, vol. 88, pp. 325–356. North-Holland Math. Stud. (1984)

  10. Holyer I.: The NP-completeness of edge-colouring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuratowski K.: Sur le probleme des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)

    MATH  Google Scholar 

  12. Lovász L.: A characterization of perfect graphs. J. Comb. Theory B 13, 95–98 (1972)

    Article  MATH  Google Scholar 

  13. Lovász L.: On the Shannon capacity of a graph. Trans. Inf. Theory 25(1), 1–7 (1979)

    Article  MATH  Google Scholar 

  14. Monien B.: The complexity of determining a shortest cycle of even length. Comput. 31, 355–369 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Padberg M.W.: Perfect zero-one matrices. Math. Program. 6, 180–196 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pêcher A., Wagler A.: On classes of minimal circular-imperfect graphs. Discret. Appl. Math. 156, 998–1010 (2008)

    Article  MATH  Google Scholar 

  17. Pêcher, A., Wagler, A.: On the polynomial time computability of the circular-chromatic number for some superclasses of perfect graphs. In: LAGOS’09, V Latin-American Algorithms, Graphs and Optimization Symposium, vol. 35, pp. 53–58. Electronic Notes in Discrete Mathematics (2009)

  18. Pêcher, A., Wagler, A.: Clique and chromatic number of circular-perfect graphs. In: ISCO’10, International Symposium on Combinatorial Optimization, vol. 36, pp. 199–206. Electronic Notes in Discrete Mathematics (2010)

  19. Pêcher A., Zhu X.: Claw-free circular-perfect graphs. J. Graph Theory 65, 163–172 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ramirez-Alfonsin, J., Reed, B. (eds): Perfect Graphs. Wiley, New York (2001)

    MATH  Google Scholar 

  21. Robertson N., Sanders D.P., Seymour P.D., Thomas R.: The four colour theorem. J. Comb. Theory Ser. B 70, 2–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vince A.: Star chromatic number. J. Graph Theory 12, 551–559 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vizing V.G.: Vertex colorings with given colors (in Russian). Metody Diskret. Analiz. 29, 3–10 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Wagler, A.: On rank-perfect subclasses of near-bipartite graphs. 4OR, pp. 329–336 (2005)

  25. Zhu X.: Circular perfect graphs. J. Graph Theory 48(1–3), 186–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret K. Wagler.

Additional information

Supported by the ANR/NSc project GraTel ANR-09-blan-0373-01, NSC98-2115-M-002-013-MY3 and NSC99-2923-M-110-001-MY3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pêcher, A., Wagler, A.K. Computing clique and chromatic number of circular-perfect graphs in polynomial time. Math. Program. 141, 121–133 (2013). https://doi.org/10.1007/s10107-012-0512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0512-4

Keywords

Mathematics Subject Classification (2000)