Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Daily vertical coordinate time series of Global Navigation Satellite System (GNSS) stations usually contains tectonic and non-tectonic deformation signals, residual atmospheric delay signals, measurement noise, etc. In geophysical studies, it is very important to separate various geophysical signals from the GNSS time series to truthfully reflect the effect of mass loadings on crustal deformation. Based on the independence of mass loadings, we combine the Ensemble Empirical Mode Decomposition (EEMD) with the Phase Space Reconstruction-based Independent Component Analysis (PSR-ICA) method to analyze the vertical time series of GNSS reference stations. In the simulation experiment, the seasonal non-tectonic signal is simulated by the sum of the correction of atmospheric mass loading and soil moisture mass loading. The simulated seasonal non-tectonic signal can be separated into two independent signals using the PSR-ICA method, which strongly correlated with atmospheric mass loading and soil moisture mass loading, respectively. Likewise, in the analysis of the vertical time series of GNSS reference stations of Crustal Movement Observation Network of China (CMONOC), similar results have been obtained using the combined EEMD and PSR-ICA method. All these results indicate that the EEMD and PSR-ICA method can effectively separate the independent atmospheric and soil moisture mass loading signals and illustrate the significant cause of the seasonal variation of GNSS vertical time series in the mainland of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amiri-Simkooei, A. R., Tiberius, C. C. J. M., and Teunissen, S. P. (2007). Assessment of noise in GPS coordinate time series: methodology and results. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B7).

  • Cardoso, J. (1998). Multidimensional independent component analysis. In Acoustics, Speech and Signal Processing. Proceedings of the 1998 IEEE International Conference, 4, 1941–1944.

  • Dai, W., Huang, D., and Liu, B. (2014). A phase space reconstruction based single channel ICA algorithm and its application in dam deformation analysis. Survey Review, 47(345), 387–396.

  • Dong, D., Fang, P., Bock, Y., Cheng, M. K., and Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS‐derived site position time series. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B4), ETG-9.

  • Dragert, H., Wang, K., and James, T. S. (2001). A silent slip event on the deeper Cascadia subduction interface. Science, 292(5521), 1525–1528.

  • Fraser, A. M., and Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical review A, 33(2), 1134.

  • Grech, D., and Mazur, Z. (2013). On the scaling ranges of detrended fluctuation analysis for long-term memory correlated short series of data. Physica A: Statistical Mechanics and its Applications, 392(10), 2384–2397.

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H. et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 454, 1971, 903–995).

  • Hyvärinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4), 411–430.

  • Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 10(3), 626–634.

  • Jiang, Z., Wang, M., Wang, Y., Wu, Y., Che, S. et al. (2014). GPS constrained coseismic source and slip distribution of the 2013 mw6.6 Lushan, China, earthquake and its tectonic implications. Geophysical Research Letters, 41(2), 407–413.

  • Kennel, M. B., Brown, R., and Abarbanel, H. D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45(6), 3403.

  • Li Z, Jiang. W. P., Liu H. F., and Qu X.C. (2012). Noise model establishment and analysis of IGS reference station coordinate time series inside China. Acta Geodaetica et Cartographica Sinica, 41(4), 496G503.

  • Mao, A., Harrison, C. G., and Dixon, T. H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research: Solid Earth (1978–2012), 104(B2), 2797–2816.

  • Montillet, J. P., Tregoning, P., McClusky, S., and Yu, K. (2013). Extracting white noise statistics in GPS coordinate time series. IEEE Geoscience and Remote Sensing Letters, 10(3), 563–567.

  • Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. Ph.D. Thesis, University of California, San Diego.

  • Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45(9), 712.

  • Qin, Z., Zou, X., and Weng, F. (2012). Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998–2010. Climate Dynamics, 39(7–8), 1763–1779.

  • Rodriguez, E., Echeverria, J. C., and Alvarez-Ramirez, J. (2009). 1/fαfractal noise generation from Grünwald-Letnikov formula. Chaos, Solitons & Fractals, 39(2), 882–888.

  • Schroeder, M., Wiesenfeld, K. (1991). Fractals, chaos, power laws: minutes from an infinite paradise. Physics Today, 44(11), 91-91.

  • Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick 1980. Springer, Berlin, Heidelberg, 366–381.

  • Tiampo, K. F., Rundle, J. B., Klein, W., Ben-Zion, Y., and McGinnis, S. (2004). Using eigenpattern analysis to constrain seasonal signals in Southern California. Pure and Applied Geophysics, 161(9–10), 1991–2003.

  • Vandam, T. M., Blewitt, G., and Heflin, M. B. (1994). Atmospheric pressure loading effects on Global Positioning System coordinate determinations.Journal of Geophysical Research: Solid Earth (1978–2012), 99(B12), 23939–23950.

  • Wang, M., Shen, Z. K., and Dong, D. N. (2005). Effects of non-tectonic crustal deformation on continuous GPS position time series and correction to them. Diqiu Wuli Xuebao(Chinese Journal of Geophysics), 48(5), 1045–1052.

  • Williams, S. D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., et al. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B3).

  • Wu, Z., and Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01), 1–41.

  • Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S. et al. (1997). Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. Journal of Geophysical Research: Solid Earth (1978–2012), 102(B8), 18035–18055.

Download references

Acknowledgments

We thank the Jet Propulsion Laboratory for providing the QOCA software, and Crustal Movement Observation Network of China for providing the GNSS time series. This work was supported by the State Key Development Program of Basic Research of China (Grant No. 2013CB733303) and the National Natural Science Foundation of China (Grant No. 41074004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujiao Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Dai, W., Santerre, R. et al. GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method. Pure Appl. Geophys. 174, 723–736 (2017). https://doi.org/10.1007/s00024-016-1309-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1309-9

Keywords