Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Time-Varying Delay Passivity Analysis in 4 GHz Antennas Array Design

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new approach for synchronization of dynamical networks with time-delays is proposed. It is based on stability theory of coupled time-delayed dynamical systems. Some new criteria for stability analysis which ensure the synchronization of the networks are analytically derived. Conditions for synchronization, in the form of Linear Matrix Inequality, are established. They use the Lyapunov and Krasovskii stability theories. In this approach, parameter uncertainties are introduced in the network model. Numerical simulations show the efficiency of the proposed synchronization analysis. A network of 4-GHz smart antenna array is used and analyzed in some details. This array provides a control of the direction of the radiation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Belykh, M. Hasler, Synchronization and graph topology. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(11), 3423–3433 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Chandran, Adaptive Antenna Arrays: Trends and Applications (Springer, Berlin, 2004)

    Google Scholar 

  3. M.G. Earl, S.H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion. Phys. Rev. E 67(3), 036204 (2003)

    Article  Google Scholar 

  4. E. Fridman, U. Shaked, Parameter dependant stability and stabilization of uncertain time delay systems. IEEE Trans. Autom. Control 48, 861–866 (2003)

    Article  MathSciNet  Google Scholar 

  5. F. Hutu, S. Cauet, P. Coirault, Antenna arrays principle and solutions: Robust control approach. Int. J. Comput. Commun. Control III(2), 161–171 (2008)

    Google Scholar 

  6. J.D. Kraus, R.J. Marhefka, Antennas for All Applications (McGraw-Hill, New York, 2002)

    Google Scholar 

  7. C. Li, X. Liao, Passivity analysis of neural networks with time delay. IEEE Trans. Circuits Syst. 52(8), 471–475 (2005)

    Article  MathSciNet  Google Scholar 

  8. Z. Li, G. Chen, Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. 53(1), 28–33 (2006)

    Article  Google Scholar 

  9. Z. Li, L. Jiao, J.-J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength. Physica A 387, 1369–1380 (2008)

    Article  Google Scholar 

  10. X. Liao, G. Chen, E.N. Sanchez, Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Netw. 15(7), 855–866 (2002)

    Article  MathSciNet  Google Scholar 

  11. T. Liu, G.M. Dimirovski, J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology. Physica A 387, 643–652 (2008)

    Article  Google Scholar 

  12. J. Lu, G. Chen, A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841–846 (2005)

    Article  MathSciNet  Google Scholar 

  13. M.S. Mahmoud, A. Ismail, Passivity and passification of time-delay systems. J. Math. Anal. Appl. 292, 247–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y.S. Moon, P. Park, W.H. Kwon, Robust stabilization of uncertain input-delayed systems using reduction method. Automatica 37, 307–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.-I. Niculescu, R. Lozano, On the passivity of linear delay systems. IEEE Trans. Autom. Control 46(3), 460–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. S.J. Orfanidis, Electromagnetic waves and antennas. http://www.ece.rutgers.edu/~orfanidi/ewa/, 2004

  17. A. Papachristodoulou, A. Jadbabaie, Synchronization in oscillator networks with heterogeneous delays, switching topologies and nonlinear dynamics. In IEEE Conference on Decision and Control (2006) pp. 4307–4312

    Google Scholar 

  18. A. Pogromosky, H. Nijmeijer, Cooperative oscillatory behavior of mutually coupled dynamical systems. IEEE Trans. Circuits Syst. 48(2), 152–162 (2001)

    Article  Google Scholar 

  19. C. Posadas-Castillo, C. Cruz-Hernandez, R.M. Lopez-Gutierrez, Experimental realization of synchronization in complex networks with Chua’s circuits like nodes. Chaos Solitons Fractals 40(4), 1963–1975 (2007)

    Article  Google Scholar 

  20. M.S. Saadni, M. Chaabane, D. Mehdi, Stability and stabilizability of a class of uncertain dynamical systems with delay. Int. J. Appl. Math. Comput. Sci. 15(3), 321 (2005)

    MathSciNet  MATH  Google Scholar 

  21. V. Singh, A generalized LMI-based approach to the global asymptotic stability of delayed cellular neural networks. IEEE Trans. Neural Netw. 15(1), 223–225 (2004)

    Article  Google Scholar 

  22. R.E. Skelton, T. Iwasaki, K.M. Grigoriadis, A Unified Algebraic Approach to Linear Control Design (Taylor & Francis, New York, 1997)

    Google Scholar 

  23. G.-B. Stan, Global analysis and synthesis of oscillations: a dissipativity approach. PhD thesis, Universite de Liege, Faculte des Sciences Appliquees, 2005

  24. G.-B. Stan, R. Sepulchre, Dissipativity and global analysis of limit cycles in networks of oscillators. In 6th Conference of Mathematical Theory of Networks and Systems (2004)

    Google Scholar 

  25. G.-B. Stan, R. Sepulchre, Global analysis of limit cycles in networks of oscillators. In Proceedings of the Sixth IFAC Symposium on Nonlinear Control Systems (2004)

    Google Scholar 

  26. S. Tarbouriech, G. Garcia, J.M. Gomes da Silva, Robust stability of uncertain polytopic linear time delays systems with saturation inputs: an LMI approach. Comput. Electr. Eng. 28, 157–169 (2002)

    Article  MATH  Google Scholar 

  27. J. Willems, Dissipative dynamical systems Arch. Ration. Mech. Anal. 45, 321–393 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. C.W. Wu, Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling. IEEE Trans. Circuits Syst. II 52(5), 282–286 (2005)

    Article  Google Scholar 

  29. Y. Xia, Y. Jia, Robust control of state delayed systems with polytopic type uncertainties via parameter-dependant Lyapunov functionals. Syst. Control Lett. 50, 183–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Yu, Passivity analysis for dynamic multilayer neuro identifier. IEEE Trans. Circuits Syst. 50(1), 173–178 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cauet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauet, S., Hutu, F. & Coirault, P. Time-Varying Delay Passivity Analysis in 4 GHz Antennas Array Design. Circuits Syst Signal Process 31, 93–106 (2012). https://doi.org/10.1007/s00034-010-9247-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9247-8

Keywords