Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Synchronization for Time-Delay Lur’e Systems with Sector and Slope Restricted Nonlinearities Under Communication Constraints

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new approach to the output feedback control problem of master-slave synchronization of time-delay chaotic Lur’e systems with sector and slope restricted nonlinearities under communication constraints. The communication constraints involve measurement quantization and signal transmission delay. By constructing an appropriate Lyapunov functional with the idea of a discretized Lyapunov–Krasovskii functional method and utilizing the sector bound of the logarithmic quantizer, a delay-dependent synchronization criterion is derived. The desired synchronization controller can be obtained by solving a set of linear matrix inequalities. Finally, numerical simulations for Chua’s circuit are proposed to show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Cao, H.X. Li, D.W.C. Ho, Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos Solitons Fractals 23, 1285–1298 (2005)

    MathSciNet  MATH  Google Scholar 

  2. G. Chen, X. Dong, From Chaos to Order-Perspectives, Methodologies, and Applications (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  3. D.L. Chen, J.T. Sun, Q.D. Wu, Impulsive control and its application to Lü’s chaotic system. Chaos Solitons Fractals 21(5), 1135–1142 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.H. Chen, X. Lu, F. Chen, Impulsive synchronization of chaotic Lur’e systems via partial states. Phys. Lett. A 372(23), 4210–4216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Cruz-Hernández, Synchronization of time-delay Chua’s oscillator with application to secure communication. Nonlinear Dyn. Syst. Theory 4(1), 1–13 (2004)

    MATH  Google Scholar 

  6. K. Ding, Q.L. Han, Synchronization criteria for Lur’e complex dynamical networks with coupling delays, in Proc. Joint 48th IEEE Conf. Decision Control and 28th Chinese Control Conf. (2009), pp. 2754–2759

    Google Scholar 

  7. A.L. Fradkov, B. Andrievsky, R.J. Evans, Synchronization of nonlinear systems via under information contraints. Chaos 18, 037109 (2008)

    Article  MathSciNet  Google Scholar 

  8. M. Fu, L. Xie, The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  Google Scholar 

  9. H.J. Gao, T.W. Chen, H Estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52(11), 2070–84 (2007)

    Article  MathSciNet  Google Scholar 

  10. H.J. Gao, T.W. Chen, Network-based H output tracking control. IEEE Trans. Autom. Control 53(3), 655–667 (2008)

    Article  MathSciNet  Google Scholar 

  11. H.J. Gao, T.W. Chen, J. Lam, A new delay system approach to network-based control. Automatica 44, 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. H.J. Gao, X.Y. Meng, T.W. Chen, J. Lam, Stabilization of networked control systems via dynamic output-feedback controllers. SIAM J. Control Optim. 48(5), 3643–3658 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, Cambridge, 2003)

    Book  MATH  Google Scholar 

  14. X.P. Guan, G. Feng, C.L. Chen, G.R. Chen, A full delayed feedback controller design method for time-delay chaotic systems. Physica D 227, 36–42 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Q.L. Han, On designing time-varying delay feedback controllers for Master-slave synchronization of Lur’e systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 54(7), 1573–1583 (2007)

    Article  Google Scholar 

  16. M. Hasler, Synchronization of chaotic systems and transmission of information. Int. J. Bifurc. Chaos 8, 647–659 (1998)

    Article  MATH  Google Scholar 

  17. D.H. Ji, J.H. Park, W.J. Yoo, S.C. Won, S.M. Lee, Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay. Phys. Lett. A 374, 1218–1227 (2010)

    Article  Google Scholar 

  18. S.M. Lee, S.J. Choi, D.H. Ji, J.H. Park, S.C. Won, Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Li, J. Yu, Z. Wang, Delay-range-dependent synchronization criteria for Lur’e systems with delay feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 1796–1803 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. X.Z. Liu, Impulsive synchronization of chaotic systems subject to time delay. Nonlinear Anal. 71, e1320–e1327 (2009)

    Article  Google Scholar 

  21. J.Q. Lu, J.D. Cao, D.W.C. Ho, Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay. IEEE Trans. Circuits Syst. I, Regul. Pap. 55(5), 1347–1356 (2008)

    Article  MathSciNet  Google Scholar 

  22. J.G. Lu, D.J. Hill, Global asymptotical synchronization of chaotic Lur’e systems using sampled data: a linear matrix inequality approach. IEEE Trans. Circuits Syst. II, Express Briefs 55(6), 586–590 (2008)

    Article  Google Scholar 

  23. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  24. J.T. Sun, Global synchronization criteria with channel time-delay for chaotic time-delay system. Chaos Solitons Fractals 21(4), 967–975 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.T. Sun, F. Qiao, Q.D. Wu, Impulsive control of a financial model. Phys. Lett. A 335(4), 282–288 (2005)

    Article  MATH  Google Scholar 

  26. J.A.K. Suykens, P.F. Curran, L.O. Chua, Robust synthesis for Master-slave synchronization of Lur’e systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46(7), 841–850 (1999)

    Article  MATH  Google Scholar 

  27. J. Xiang, Y.J. Li, W. Wei, An improved condition for master-slave synchronization of Lur’e systems with time delay. Phys. Lett. A 362, 154–158 (2007)

    Article  Google Scholar 

  28. M.E. Yalein, J.A.K. Suykens, J. Vandewalle, Master-slave synchronization of Lur’e systems with time-delay. Int. J. Bifurc. Chaos 11(6), 1707–1722 (2001)

    Article  Google Scholar 

  29. D. Yue, Q.L. Han, C. Peng, State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II, Express Briefs 51(11), 640–644 (2004)

    Article  Google Scholar 

  30. D. Yue, Q.L. Han, J. Lam, Network-based robust H control of systems with uncertainty. Automatica 41, 999–1007 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y.J. Zhang, D. Yue, E.G. Tian, Synchronization control of stochastic delayed neural networks communicating with unreliable links, in Proc. Joint 48th IEEE Conf. Decision Control and 28th Chinese Control Conf. (2009), pp. 6756–6761

    Google Scholar 

  32. T. Zhang, G. Feng, Output tracking of piecewise-linear systems via error feedback regulator with application to synchronization of nonlinear Chua’s circuit. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 54(8), 1644–1652 (2007)

    MathSciNet  Google Scholar 

  33. C.K. Zhang, Y. He, M. Wu, Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans. Circuits Syst. II, Express Briefs 56(4), 320–324 (2009)

    Article  Google Scholar 

  34. M.Y. Zhong, Q.L. Han, Fault-tolerant master-slave synchronization for Lur’e systems using time-delay feedback control. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 56(7), 1391–1404 (2009)

    Article  MathSciNet  Google Scholar 

  35. B. Zhou, G.R. Duan, J. Lam, On the absolute stability approach to quantized feedback control. Automatica 46, 337–346 (2010)

    Article  MATH  Google Scholar 

  36. X.L. Zhu, G.H. Yang, New H controller design method for networked control systems with quantized state feedback, in Proc. 2009 American Control Conference (2009), pp. 5103–5108

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lu, G. & Zheng, Y. Synchronization for Time-Delay Lur’e Systems with Sector and Slope Restricted Nonlinearities Under Communication Constraints. Circuits Syst Signal Process 30, 1573–1593 (2011). https://doi.org/10.1007/s00034-011-9311-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9311-z

Keywords