Abstract
This paper demonstrates a method of synthesis of trans-impedance filters using the theory of nodal admittance matrix expansion. Two examples of the Bach Second-Order Lowpass trans-impedance filter and the Multiple Feedback (MFB) Second-Order Lowpass II trans-impedance filter are synthesized, which verifies the feasibility of the proposed method of circuit generation.
Similar content being viewed by others
References
I.A. Awad, A.M. Soliman, On the voltage mirrors and the current mirrors. Analog Integr. Circuits Signal Process. 32(1), 79–81 (2002)
M.A. Duarte-Villaseñor, E. Tlelo-Cuautle, L. Gerardo de la Fraga, Binary genetic encoding for the synthesis of mixed-mode circuit topologies. Circuits Syst. Signal Process. 31(3), 849–863 (2012)
D.G. Haigh, A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion. IEEE Trans. Circuits Syst. I, Regul. Pap. 53(12), 2715–2728 (2006)
D.G. Haigh, P.M. Radmore, Admittance matrix models for the nullor using limit variables and their application to circuit design. IEEE Trans. Circuits Syst. I, Regul. Pap. 53(10), 2214–2223 (2006)
D.G. Haigh, P. Radmore et al., Systematic synthesis method for analogue circuits—part I. Notation and synthesis toolbox, in International Symposium of Circuit and System, ISCAS, May 23–26, vol. I, (2004), pp. 701–704
D.G. Haigh, F.Q. Tan, C. Papavassiliou, Systematic synthesis of active-RC circuit building-blocks. Analog Integr. Circuits Signal Process. 43(3), 297–315 (2005)
D.G. Haigh, T.J.W. Clark, P.M. Radmore, Symbolic framework for linear active circuits based on port equivalence using limit variables. IEEE Trans. Circuits Syst. I, Regul. Pap. 53(9), 2011–2024 (2006)
R.A. Saad, A.M. Soliman, Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Trans. Circuits Syst. I 55, 2726–2735 (2008)
R.A. Saad, A.M. Soliman, Generation, modeling, and analysis of CCII-based gyrators using the generalized symbolic framework for linear active circuits. Int. J. Circuit Theory Appl. 36(3), 289–309 (2008)
R.A. Saad, A.M. Soliman, A new approach for using the pathological mirror elements in the ideal representation of active devices. Int. J. Circuit Theory Appl. 38(3), 148–178 (2010)
C. Sánchez-López, F.V. Fernández, E. Tlelo-Cuautle, Generalized admittance matrix models of OTRAs and COAs. Microelectron. J. 41(8), 502–505 (2010)
C. Sanchez-Lopez, F.V. Fernandez, E. Tlelo-Cuautle, S.X.-D. Tan, Pathological element-based active device models and their application to symbolic analysis. IEEE Trans. Circuits Syst. I 99, 1 (2011)
C. Sánchez-López, E. Tlelo-Cuautle, E. Martínez-Romero, Symbolic analysis of OTRAs-based circuits. J. Appl. Res. Technol. 9(1), 69–80 (2011)
A.M. Soliman, Two integrator loop filters: generation using NAM expansion and review. J. Electr. Comput. Eng. 2010, 108687 (2010). doi:10.1155/2010/108687
A.M. Soliman, Generation of current mode filters using NAM expansion. Int. J. Circuit Theory Appl. 19, 1087–1103 (2011)
A.M. Soliman et al., Applications of voltage and current unity gain cells in nodal admittance matrix expansion. IEEE Circuits Syst. Mag. 9(4), 29 (2009)
L. Tan, Q. Li, R. Li, J. Teng, Design of transimpedance low-pass filters. Int. J. Electron. (2012). doi:10.1080/00207217.2012.680182
E. Tlelo-Cuautle, C. Sánchez-López, D. Moro-Frías, Symbolic analysis of (MO) (I)CCI(II) (III)-based analog circuits. Int. J. Circuit Theory Appl. 38(6), 649–659 (2010)
H.-Y. Wang, W.-C. Huang, N.-H. Chiang, Symbolic nodal analysis of circuits using pathological elements. IEEE Trans. Circuits Syst. II 57(11), 874–877 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tan, L., Bai, Y., Teng, J. et al. Trans-Impedance Filter Synthesis Based on Nodal Admittance Matrix Expansion. Circuits Syst Signal Process 32, 1467–1476 (2013). https://doi.org/10.1007/s00034-012-9514-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-012-9514-y