Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trans-Impedance Filter Synthesis Based on Nodal Admittance Matrix Expansion

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper demonstrates a method of synthesis of trans-impedance filters using the theory of nodal admittance matrix expansion. Two examples of the Bach Second-Order Lowpass trans-impedance filter and the Multiple Feedback (MFB) Second-Order Lowpass II trans-impedance filter are synthesized, which verifies the feasibility of the proposed method of circuit generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.A. Awad, A.M. Soliman, On the voltage mirrors and the current mirrors. Analog Integr. Circuits Signal Process. 32(1), 79–81 (2002)

    Article  Google Scholar 

  2. M.A. Duarte-Villaseñor, E. Tlelo-Cuautle, L. Gerardo de la Fraga, Binary genetic encoding for the synthesis of mixed-mode circuit topologies. Circuits Syst. Signal Process. 31(3), 849–863 (2012)

    Article  MATH  Google Scholar 

  3. D.G. Haigh, A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion. IEEE Trans. Circuits Syst. I, Regul. Pap. 53(12), 2715–2728 (2006)

    Article  MathSciNet  Google Scholar 

  4. D.G. Haigh, P.M. Radmore, Admittance matrix models for the nullor using limit variables and their application to circuit design. IEEE Trans. Circuits Syst. I, Regul. Pap. 53(10), 2214–2223 (2006)

    Article  MathSciNet  Google Scholar 

  5. D.G. Haigh, P. Radmore et al., Systematic synthesis method for analogue circuits—part I. Notation and synthesis toolbox, in International Symposium of Circuit and System, ISCAS, May 23–26, vol. I, (2004), pp. 701–704

    Google Scholar 

  6. D.G. Haigh, F.Q. Tan, C. Papavassiliou, Systematic synthesis of active-RC circuit building-blocks. Analog Integr. Circuits Signal Process. 43(3), 297–315 (2005)

    Article  Google Scholar 

  7. D.G. Haigh, T.J.W. Clark, P.M. Radmore, Symbolic framework for linear active circuits based on port equivalence using limit variables. IEEE Trans. Circuits Syst. I, Regul. Pap. 53(9), 2011–2024 (2006)

    Article  MathSciNet  Google Scholar 

  8. R.A. Saad, A.M. Soliman, Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Trans. Circuits Syst. I 55, 2726–2735 (2008)

    Article  MathSciNet  Google Scholar 

  9. R.A. Saad, A.M. Soliman, Generation, modeling, and analysis of CCII-based gyrators using the generalized symbolic framework for linear active circuits. Int. J. Circuit Theory Appl. 36(3), 289–309 (2008)

    Article  MATH  Google Scholar 

  10. R.A. Saad, A.M. Soliman, A new approach for using the pathological mirror elements in the ideal representation of active devices. Int. J. Circuit Theory Appl. 38(3), 148–178 (2010)

    MATH  Google Scholar 

  11. C. Sánchez-López, F.V. Fernández, E. Tlelo-Cuautle, Generalized admittance matrix models of OTRAs and COAs. Microelectron. J. 41(8), 502–505 (2010)

    Article  Google Scholar 

  12. C. Sanchez-Lopez, F.V. Fernandez, E. Tlelo-Cuautle, S.X.-D. Tan, Pathological element-based active device models and their application to symbolic analysis. IEEE Trans. Circuits Syst. I 99, 1 (2011)

    Google Scholar 

  13. C. Sánchez-López, E. Tlelo-Cuautle, E. Martínez-Romero, Symbolic analysis of OTRAs-based circuits. J. Appl. Res. Technol. 9(1), 69–80 (2011)

    Google Scholar 

  14. A.M. Soliman, Two integrator loop filters: generation using NAM expansion and review. J. Electr. Comput. Eng. 2010, 108687 (2010). doi:10.1155/2010/108687

    Google Scholar 

  15. A.M. Soliman, Generation of current mode filters using NAM expansion. Int. J. Circuit Theory Appl. 19, 1087–1103 (2011)

    Article  Google Scholar 

  16. A.M. Soliman et al., Applications of voltage and current unity gain cells in nodal admittance matrix expansion. IEEE Circuits Syst. Mag. 9(4), 29 (2009)

    Article  MathSciNet  Google Scholar 

  17. L. Tan, Q. Li, R. Li, J. Teng, Design of transimpedance low-pass filters. Int. J. Electron. (2012). doi:10.1080/00207217.2012.680182

    Google Scholar 

  18. E. Tlelo-Cuautle, C. Sánchez-López, D. Moro-Frías, Symbolic analysis of (MO) (I)CCI(II) (III)-based analog circuits. Int. J. Circuit Theory Appl. 38(6), 649–659 (2010)

    Google Scholar 

  19. H.-Y. Wang, W.-C. Huang, N.-H. Chiang, Symbolic nodal analysis of circuits using pathological elements. IEEE Trans. Circuits Syst. II 57(11), 874–877 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, L., Bai, Y., Teng, J. et al. Trans-Impedance Filter Synthesis Based on Nodal Admittance Matrix Expansion. Circuits Syst Signal Process 32, 1467–1476 (2013). https://doi.org/10.1007/s00034-012-9514-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9514-y

Keywords