Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Analysis of Nonlinear Circuits: DAE Models with Indices Zero and One

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Adee, Memristor inside, in IEEE Spectrum, (2010)

    Google Scholar 

  2. M.D.S. Aliyu, E.K. Boukas, Kalman filtering for affine nonlinear descriptor systems. Circuits Syst. Signal Process. 30, 125–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Amari, Topological foundations of Kron’s tearing of electrical networks, in RAAG Memoirs, vol. 3 (1962), pp. 322–350

    Google Scholar 

  4. R.J. Avalos, C.A. Cañizares, F. Milano, A.J. Conejo, Equivalency of continuation and optimization methods to determine saddle-node and limit-induced bifurcations in power systems. IEEE Trans. Circuits Syst. I 56, 210–223 (2009)

    Article  Google Scholar 

  5. B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21, 2629–2645 (2011)

    Article  MATH  Google Scholar 

  6. B. Bollobás, Modern Graph Theory (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  7. F.H. Branin, The relation between Kron’s method and the classical methods of network analysis. Matrix Tensor Q. 12, 69–115 (1962)

    Google Scholar 

  8. K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (SIAM, Philadelphia, 1996)

    MATH  Google Scholar 

  9. D.P. Brown, Derivative-explicit differential equations for RLC graphs. J. Franklin Inst. 275, 503–514 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.R. Bryant, The order of complexity of electrical networks. IEE Proc. C 106, 174–188 (1959)

    Google Scholar 

  11. S.L. Campbell, Singular Systems of Differential Equations (Pitman, London, 1980)

    MATH  Google Scholar 

  12. S.L. Campbell, Singular Systems of Differential Equations. II (Pitman, London, 1982)

    MATH  Google Scholar 

  13. W.K. Chen, Net Theory and Its Applications (World Scientific, Singapore, 2003)

    MATH  Google Scholar 

  14. L.O. Chua, Memristor—The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  15. L.O. Chua, A.D. Deng, Impasse points. I. Numerical aspects. Int. J. Circuit Theory Appl. 17, 213–235 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. L.O. Chua, A.D. Deng, Impasse points. II. Analytical aspects. Int. J. Circuit Theory Appl. 17, 271–282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  18. F. Corinto, A. Ascoli, M. Gilli, Analysis of current-voltage characteristics for memristive elements in pattern recognition systems. Int. J. Circuit Theory Appl. 40, 1277–1320 (2012)

    Article  Google Scholar 

  19. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors. Proc. IEEE 97, 1717–1724 (2009)

    Article  Google Scholar 

  20. R. Diestel, Graph Theory (Springer, Berlin, 2000)

    Google Scholar 

  21. A.D. Domínguez-García, S. Trenn, Detection of impulsive effects in switched DAEs with applications to power electronics reliability analysis, in Proc. 49th IEEE Conf. Dec. Control, (2010), pp. 5662–5667

    Google Scholar 

  22. A. Encinas, R. Riaza, Tree-based characterization of low index circuit configurations without passivity restrictions. Int. J. Circuit Theory Appl. 36, 135–160 (2008)

    Article  Google Scholar 

  23. D. Estévez-Schwarz, C. Tischendorf, Structural analysis of electric circuits and consequences for MNA. Int. J. Circuit Theory Appl. 28, 131–162 (2000)

    Article  Google Scholar 

  24. M. Fosséprez, Non-linear Circuits: Qualitative Analysis of Non-linear, Non-reciprocal Circuits (Wiley, New York, 1992)

    Google Scholar 

  25. L.R. Foulds, Graph Theory Applications (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  26. C.W. Gear, The simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory 18, 89–95 (1971)

    Article  Google Scholar 

  27. M. Günther, U. Feldmann, CAD-based electric-circuit modeling in industry. I. Mathematical structure and index of network equations. Surv. Math. Ind. 8, 97–129 (1999)

    MATH  Google Scholar 

  28. M. Günther, U. Feldmann, CAD-based electric-circuit modeling in industry. II. Impact of circuit configurations and parameters. Surv. Math. Ind. 8, 131–157 (1999)

    MATH  Google Scholar 

  29. E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  30. B.K. Harrison, A discussion of some mathematical techniques used in Kron’s method of tearing. J. Soc. Ind. Appl. Math. 11, 258–280 (1963)

    Article  MATH  Google Scholar 

  31. M. Hasler, J. Neirynck, Nonlinear Circuits (Artech House, Norwood, 1986)

    Google Scholar 

  32. R.A. Horn, Ch.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  33. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Itoh, L.O. Chua, Memristor Hamiltonian circuits. Int. J. Bifurc. Chaos 21, 2395–2425 (2011)

    Article  MATH  Google Scholar 

  35. S. Iwata, M. Takamatsu, Index minimization of differential-algebraic equations in hybrid analysis for circuit simulation. Math. Program., Ser. A 121, 105–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Iwata, M. Takamatsu, C. Tischendorf, Tractability index of hybrid equations for circuit simulation. Math. Comput. 81, 923–939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Kolev, Determining the stability margin in linear interval parameter electric circuits via a DAE model. Int. J. Circuit Theory Appl. 40, 923–936 (2012)

    Article  Google Scholar 

  38. G. Kron, Tensor Analysis of Networks (Wiley, New York, 1939)

    Google Scholar 

  39. P. Kunkel, V. Mehrmann, Differential-Algebraic Equations. Analysis and Numerical Solution (EMS, Longmont, 2006)

    Book  MATH  Google Scholar 

  40. R. Lamour, R. März, C. Tischendorf, Differential-Algebraic Equations: a Projector Based Analysis (Springer, Berlin, 2013)

    Book  Google Scholar 

  41. F.L. Lewis (ed.), Circuits Syst. Signal Process. 5(1) (1986). Special issue on semistate systems

  42. F.L. Lewis, V.G. Mertzios (eds.), Circuits Syst. Signal Process. 8(3) (1989). Special issue on recent advances in singular systems

  43. C. Liebchen, R. Rizzi, Classes of cycle bases. Discrete Appl. Math. 155, 337–355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Lin, S. Fei, Q. Wu, Reliable H filtering for discrete-time switched singular systems with time-varying delay. Circuits Syst. Signal Process. 31, 1191–1214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. D.G. Luenberger, Dynamic equations in descriptor form. IEEE Trans. Autom. Control 22, 312–321 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  46. D.G. Luenberger, Time-invariant descriptor systems. Automatica 14, 473–485 (1978)

    Article  MATH  Google Scholar 

  47. M.S. Mahmoud, Y. Xia, A generalized H 2 filtering of uncertain discrete-time singular systems with time-varying delays. Circuits Syst. Signal Process. 30, 107–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Messias, C. Nespoli, V.A. Botta, Hopf bifurcation from lines of equilibria without parameters in memristors oscillators. Int. J. Bifurc. Chaos 20, 437–450 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. G.J. Minty, Monotone networks. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 257, 194–212 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  50. B. Muthuswamy, P.P. Kokate, Memristor-based chaotic circuits. IETE Tech. Rev. 26, 417–429 (2009)

    Article  Google Scholar 

  51. R.W. Newcomb, The semistate description of nonlinear time-variable circuits. IEEE Trans. Circuits Syst. 28, 62–71 (1981)

    Article  MathSciNet  Google Scholar 

  52. L. Perko, Differential Equations and Dynamical Systems (Springer, Berlin, 2001)

    MATH  Google Scholar 

  53. Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011)

    Article  Google Scholar 

  54. P.J. Rabier, W.C. Rheinboldt, Theoretical and numerical analysis of differential-algebraic equations, in Handbook of Numerical Analysis, vol. VIII (North-Holland, Amsterdam, 2002), pp. 183–540

    Google Scholar 

  55. T. Reis, Circuit synthesis of passive descriptor systems: a modified nodal approach. Int. J. Circuit Theory Appl. 38, 44–68 (2010)

    Article  MATH  Google Scholar 

  56. T. Reis, T. Stykel, PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29, 1354–1367 (2010)

    Article  Google Scholar 

  57. T. Reis, T. Stykel, Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J. Appl. Dyn. Syst. 10, 1–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. G. Reiszig, Extension of the normal tree method. Int. J. Circuit Theory Appl. 27, 241–265 (1999)

    Article  Google Scholar 

  59. R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  60. R. Riaza, Nondegeneracy conditions for active memristive circuits. IEEE Trans. Circuits Syst. II 57, 223–227 (2010)

    Article  Google Scholar 

  61. R. Riaza, Explicit ODE reduction of memristive systems. Int. J. Bifurc. Chaos 21, 917–930 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Riaza, A. Encinas, Augmented nodal matrices and normal trees. Discrete Appl. Math. 158, 44–61 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Riaza, C. Tischendorf, Semistate models of electrical circuits including memristors. Int. J. Circuit Theory Appl. 39, 607–627 (2011)

    Article  MATH  Google Scholar 

  64. J.P. Roth, An application of algebraic topology: Kron’s method of tearing. Q. Appl. Math. 17, 1–24 (1959)

    Google Scholar 

  65. A.M. Sommariva, State-space equations of regular and strictly topologically degenerate linear lumped time-invariant networks: the multiport method. Int. J. Circuit Theory Appl. 29, 435–453 (2001)

    Article  MATH  Google Scholar 

  66. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  67. M. Takamatsu, S. Iwata, Index characterization of differential-algebraic equations in hybrid analysis for circuit simulation. Int. J. Circuit Theory Appl. 38, 419–440 (2010)

    MATH  Google Scholar 

  68. C. Tischendorf, Topological index calculation of DAEs in circuit simulation. Surv. Math. Ind. 8, 187–199 (1999)

    MathSciNet  MATH  Google Scholar 

  69. J. Vandewalle, L.O. Chua, The colored branch theorem and its applications in circuit theory. IEEE Trans. Circuits Syst. 27, 816–825 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  70. D.N. Vizireanu, A fast, simple and accurate time-varying frequency estimation method for single-phase electric power systems. Measurement 45, 1331–1333 (2012)

    Article  Google Scholar 

  71. D.N. Vizireanu, R.O. Preda, Is “five-point” estimation better than “three-point” estimation? Measurement 46, 840–842 (2013)

    Article  Google Scholar 

  72. L. Zhou, X. Xiao, G. Lu, Network-based control of discrete-time descriptor systems with random delays. Circuits Syst. Signal Process. 30, 1055–1070 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Projects MTM2010-15102 of Ministerio de Ciencia e Innovación and CCG10-UPM/ESP-5236 of Comunidad de Madrid/UPM, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Riaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García de la Vega, I., Riaza, R. Hybrid Analysis of Nonlinear Circuits: DAE Models with Indices Zero and One. Circuits Syst Signal Process 32, 2065–2095 (2013). https://doi.org/10.1007/s00034-013-9570-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9570-y

Keywords