Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Delay-Derivative-Dependent Sliding Mode Observer for Fault Reconstruction : A Diesel Engine System Application

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new delay-derivative-dependent sliding mode observer (SMO) design for a class of linear uncertain time-varying delay systems is presented. Based on this observer, a robust actuator fault reconstruction method is developed. In the meantime, the considered uncertainty is bounded and the time-delay is varying and affects the state system. Besides, the dynamic properties of the observer are analyzed and the reachability condition is satisfied. Applying the developed SMO, the \(H_\infty \) concept and a delay-derivative-dependent bounded real lemma (BRL), a robust actuator fault reconstruction is obtained wherein the effect of the uncertainty is minimized. Also, both the SMO and the BRL are delay-derivative-dependent which reduces the time-varying delay conservatism on the state estimation and on the fault reconstruction. A diesel engine system is included to illustrate the validity and the applicability of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. Alwi, C. Edwards, Robust fault reconstruction for linear parameter varying systems using sliding mode observers. Int. J. Robust Nonlinear Control 24, 1947–1968 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  3. M. Chen, C.S. Jiang, Q.X. Wu, Sensor fault diagnosis for a class of time delay uncertain nonlinear systems using neural network. Int. J. Autom. Comput. 5(4), 401–405 (2008)

    Article  Google Scholar 

  4. W. Chen, M. Saif, Actuator fault diagnosis for uncertain linear systems using a high-order sliding-mode robust differentiator. Int. J. Robust Nonlinear Control 18, 413–426 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Dhahri, A. Sellami, F. Ben Hmida, Robust \(H\infty \) sliding mode observer design for fault estimation in a class of uncertain nonlinear systems with LMI optimization approach. Int. J. Control Autom. Syst 10(5), 1–10 (2012)

    Article  Google Scholar 

  6. C. Edwards, S.K. Spurgeon, On the development of discontinuous observers. Int. J. Control 59, 1211–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Edwards, S.K. Spurgeon, Sliding Mode Control : Theory and Applications (Taylor & Francis, London, 1998)

    MATH  Google Scholar 

  8. P.M. Frank, Fault diagnosis in dynamic system using analytical and knowledge based redundancy: a survey and some new results. Automatica 26(3), 459–474 (1990)

    Article  MATH  Google Scholar 

  9. P.M. Frank, X. Ding, Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997)

    Article  Google Scholar 

  10. E. Fridman, U. Shaked, K. Liu, New conditions for delay-derivative-dependent stability. Automatica 45, 2723–2727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Gahinet, A. Nemirovski, A. Laub, M. Chilali, LMI Control Toolbox, User Guide (Math Works, Inc, 1995)

  12. J.J. Gertler, Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst. Mag. 8(6), 3–11 (1988)

    Article  Google Scholar 

  13. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-delay Systems (Birkhäuser, Boston, 2003)

    Book  MATH  Google Scholar 

  14. X. Han, E. Fridman, S.K. Spurgeon, Sampled-data sliding mode observer for robust fault reconstruction: a time-delay approach. J. Franklin Inst. 351(4), 2125–2142 (2014)

    Article  MathSciNet  Google Scholar 

  15. Z. Hu, G. Zhao, L. Zhang, D. Zhou, Fault estimation for nonlinear dynamic system based on the second-order sliding mode observer. Circuits Syst. Signal Process. (2015). doi:10.1007/s00034-015-0060-2

  16. R. Isermann, Process fault detection based on modeling and estimation methods—a survey. Automatica 20(4), 387–404 (1984)

    Article  MATH  Google Scholar 

  17. E.M. Jafarov, Design modification of sliding mode observer for uncertain MIMO systems without and with time-delay. Asian J. Control 7(4), 380–392 (2005)

    Article  MathSciNet  Google Scholar 

  18. E.M. Jafarov, Variable Structure Control and Time-Delay Systems (WSEAS Press, Athens, 2009). Kindly check and confirm the inserted publisher location is correct for the reference [18]

    Google Scholar 

  19. M. Jankovic, I. Kolmanovsky, Constructive Lyapunov control design for turbocharged diesel engines. IEEE Trans. Control Syst. Technol. 8, 288–299 (2000)

    Article  Google Scholar 

  20. M. Jankovic, I. Kolmanovsky, Developments in control of time-delay systems for automotive powertrain applications, Delay Differential Equations: Recent Advances and New Directions (Springer, Berlin, 2009)

    Google Scholar 

  21. B. Jiang, P. Shi, Z. Mao, Sliding mode observer-based fault estimation for nonlinear networked control systems. Circuits Syst. Signal Process. 30, 1–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. A.J. Koshkouei, K.J. Burnham, Discontinuous observer for nonlinear time-delay systems. Int. J. Syst. Sci. 40, 383–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Li, L. Guo, X. Xin, Improved delay-dependent bounded real lemma for uncertain time-delay systems. Inf. Sci. 179, 3711–3719 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Liu, S. Laghrouche, M. Harmouche, M. Wack, Adaptive-gain second-order sliding mode observer design for switching power converters. Control. Engineering Practice. 30, 124–131 (2014)

    Article  Google Scholar 

  25. J. Liu, S. Laghrouche, M. Wack, Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. Int. J. Control 87(6), 1117–1130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Liu, S. Laghrouche, F.S. Ahmed, M. Wack, PEM fuel cell air-feed system observer design for automotive applications: an adaptive numerical differentiation approach. Int. J. Hydrog. Energy. 93, 17210–17221 (2014)

    Article  Google Scholar 

  27. M. Liu, P. Shi, L. Zhang, X. Zhao, Fault-Tolerant Control for Nonlinear Markovian Jump Systems via Proportional and Derivative Sliding Mode Observer Technique. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(11), 2755–2764 (2011)

    Article  MathSciNet  Google Scholar 

  28. X.G. Liu, M. Wu, R. Martin, M.L. Tang, Delay-dependent stability analysis for uncertain neutral systems with time-varying delays. Math. Comput. Simulation. 75, 15–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.F. de Loza, J. Cieslak, D. Henry, J. Dvila, A. Zolghadri, Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft. IET Control Theory Appl. 9(4), 598–607 (2015)

    Article  MathSciNet  Google Scholar 

  30. Z. Mao, B. Jiang, S.X. Ding, A fault-tolerant control framework for a class of non-linear networked control systems. Int. J. Syst. Sci. 40(5), 449–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. K.Y. Ng, C.P. Tan, D. Oetomo, Disturbance decoupled fault reconstruction using cascaded sliding mode observers. Automatica 48, 794–799 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach (Springer, London, 2001)

    MATH  Google Scholar 

  33. Y. Niu, D.W.C. Ho, Robust observer design for Itô stochastic time-delay systems via sliding mode control. Syst. Control Lett. 55(10), 781–793 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.J. Patton, J. Chen, A survey of robustness problems in quantitative model-based fault diagnosis. Appl. Maths. Comput. Sci. 3(3), 339–416 (1993)

    MATH  Google Scholar 

  35. R.J. Patton, P.M. Frank, R.N. Clark, Fault Diagnostic in Dynamic Systems: Theory and application (Prentice Hall, New York, 1989)

    Google Scholar 

  36. A. Pearson, Y. Fiagbedzi, An observer for time-delay systems. IEEE Trans. Automatic Control. 34(7), 775–787 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Sun, F. Wang, X. He, Robust fault estimation for Takagi–Sugeno nonlinear systems with time-varying state delay. Circuits Syst. Signal Process. 34(2), 641–661 (2014)

    Article  MathSciNet  Google Scholar 

  39. C.P. Tan, C. Edwards, An LMI approach for designing sliding mode observers. Int. J. Control 74, 1559–1568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. C.P. Tan, C. Edwards, Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control. 13(5), 433–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. V.I. Utkin, Sliding mode in Control Optimization (Springer-Verlag, Berlin, 1992)

    Book  MATH  Google Scholar 

  42. Q. Wu, M. Saif, Robust fault diagnosis of a satellite system using a learning strategy and second order sliding mode observer. IEEE Syst. J. 4(1), 112–121 (2010)

    Article  Google Scholar 

  43. S. Xu, J. Lam, Y. Zou, New results on delay-dependent robust H\(\infty \) control for systems with time-varying delays. Automatica 42, 343–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. X.G. Yan, C. Edwards, Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43, 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Zhang, A.K. Swain, S.K. Nguang, Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems. Asian J. control (2014). doi:10.1002/asjc.987

  46. Q. Zong, F. Zeng, W. Liu, Y. Ji, Y. Tao, Sliding mode observer-based fault detection of distributed networked control systems with time delay. Circuits Syst. Signal Process. 31, 203–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Mrs. Fatma Ouerghemni for linguistic advice. This research was supported by the Higher School of Sciences and Techniques of Tunis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Boulaabi.

Appendices

Appendices

1.1 Appendix 1

The proof of Lemma 1. Extending a proof given by [36] we get:

$$\begin{aligned}&\mathrm{rank} \left( \left[ {\begin{array}{c@{\quad }c} {sI_{n} - A - A_h {e}^{{ - h_{m}s}} } &{} F\\ C &{} 0_{p\times q} \\ \end{array}} \right] \right) \nonumber \\&\quad =\mathrm{rank} \left( \left[ {\begin{array}{c} {sI_{n} - A - A_h {e}^{{ - h_{m}s}} }\\ C \\ \end{array}} \right] \right) + q; \end{aligned}$$
(56)

however, the matrix F is full column rank and then for all complex s with \(Re(s)\ge 0\), the system \((A + A_h e^{ - h_{m}s} ,\;\,F,\;\,C)\) is minimum phase if and only if

$$\begin{aligned} \mathrm{rank}\left( \left[ {\begin{array}{c} {sI_{n} - A - A_h {e}^{{ - h_{m}s}} }\\ C \\ \end{array}} \right] \right) =n, \end{aligned}$$
(57)

which is equivalent to \((A + A_h e^{ - h_{m}s} ,\;\,C)\) is detectable. Also the invariant zeros of \((A + A_h e^{ - h_{m}s} ,\;\,F,\;\,C)\) are the unobservable modes of \((A + A_h e^{ - h_{m}s} ,\;\,C)\) and lie in \(\mathbb {C}_-\). So \((A + A_h e^{ - h_{m}s} ,\;\,F,\;\,C)\) is minimum phase if and only if the pair \((A + A_h e^{ - h_{m}s} ,\;\,C)\) is detectable.

1.2 Appendix 2

The proof of Corollary 1. From the fact that \(\dot{\bar{e}}_y(t) = \bar{C}\dot{\bar{e}}(t)\) and using the Eq. (8) we can obtain

$$\begin{aligned} \dot{ \bar{e}}_y (t)= & {} \bar{C}(\bar{A} - \bar{K} \bar{C})\bar{e}(t) + \bar{C}\bar{A}_h \bar{e}(t - h(t)) + \bar{C}\bar{G} \nu (t) - \bar{C}\bar{M}\xi (t,x(t)) \nonumber \\&\,- \bar{C}\bar{F}f(t), \end{aligned}$$
(58)

also, during the sliding \(e_y (t) = \dot{e}_y (t) = 0\) where \(\det (\bar{C}\bar{G} ) \ne 0\) , then, using (58), the equivalent output error injection is

$$\begin{aligned} \nu _{eq}(t)\cong & {} - (\bar{C}\bar{G} )^{ - 1} \left[ \bar{C}(\bar{A} - \bar{K} \bar{C})\bar{e}(t) + \bar{C}\,\bar{A}_h \bar{e}(t - h(t)) - \bar{C}\,\bar{M}\xi (t,x(t)) \nonumber \right. \\&\left. - \bar{C}\,\bar{F}f(t)\right] \end{aligned}$$
(59)

and during the sliding, the estimation error (8) will be

$$\begin{aligned} \dot{\bar{e}}(t)= & {} (\bar{A} - \bar{K} \bar{C})\bar{e}(t) + \bar{A}_h \bar{e}(t - h(t)) + \bar{G} \nu _{eq}(t) - \bar{M}\xi (t,x(t)) \,- \bar{F}f(t).\quad \quad \end{aligned}$$
(60)

Substituting (59) in (60), we obtain:

$$\begin{aligned} \dot{\bar{e}}(t)= & {} [I_n - \bar{G} (\bar{C}\bar{G} )^{ - 1} \bar{C}]((\bar{A} - \bar{K} \bar{C})\bar{e}\,(t) + \bar{A}_h \bar{e}(t - h(t)) - \bar{M}\xi (t,x(t)) \nonumber \\&\,- \bar{F}f(t)), \end{aligned}$$
(61)

to be insensitive to the uncertainty the last equation must verify

$$\begin{aligned} \left[ I_n - \bar{G} (\bar{C}\bar{G} )^{ - 1} \bar{C}\right] \bar{M} = 0. \end{aligned}$$
(62)

For the remainder of this proof, we need to calculate the matrix \([I_n - \bar{G} (\bar{C}\bar{G} )^{ - 1} \bar{C}]\), so

$$\begin{aligned} {I_n - \bar{G} (\bar{C}\bar{G} )^{ - 1} \bar{C}}= & {} I_n - \left[ {\begin{array}{cc} { - L } \\ {I_p} \\ \end{array} } \right] \bar{C}{_2}^T\left( {\left[ {\begin{array}{c@{\quad }c} 0_{p \times (n-p)} &{} \bar{C}{_2} \\ \end{array} } \right] \left[ {\begin{array}{cc} { - L } \\ {I_p} \\ \end{array} } \right] } \right) ^{ - 1} \nonumber \\&\,\times \bar{C}{_2}^T \left[ {\begin{array}{c@{\quad }c} 0_{p \times (n-p)} &{} \bar{C}{_2} \\ \end{array} } \right] . \end{aligned}$$
(63)

Since the matrix \(\bar{C}{_2}\) is an orthogonal matrix, then \(\left( {\bar{C}{_2}\bar{C}{_2}^T } \right) = I_p \); therefore,

$$\begin{aligned} {I_n- \bar{G} (\bar{C}\bar{G} )^{ - 1} \bar{C}}= & {} I_n - \left[ {\begin{array}{cc} { - L } \\ {I_p } \\ \end{array} } \right] \,\bar{C}{_2}^T\,\left[ {\begin{array}{c@{\quad }c} 0_{p \times (n-p)} &{} \bar{C}{_2} \\ \end{array} } \right] \nonumber \\= & {} I_n - \left[ {\begin{array}{c@{\quad }c} 0_{(n-p) \times (n-p)} &{} { - L} \\ 0_{p \times (n-p)} &{} I_p \\ \end{array} } \right] \nonumber \\= & {} \left[ {\begin{array}{c@{\quad }c} I_{n-p} &{} L \\ 0_{p \times (n-p)} &{} 0_{p \times p} \\ \end{array} } \right] , \end{aligned}$$
(64)

then

$$\begin{aligned} (I_n - \bar{G} (\bar{C}\bar{G} )^{ - 1} \bar{C}) \bar{F}= & {} \left[ {\begin{array}{c@{\quad }c} I_{n-p}&{}{\underbrace{\left[ {\begin{array}{c@{\quad }c} {L_q } &{} 0_{(n-p) \times q} \\ \end{array} }\right] }_L} \\ 0_{p \times (n-p)} &{} 0_{p \times p} \end{array} } \right] \left[ {\begin{array}{cc} 0_{(n-p) \times q} \\ {\underbrace{\left[ {\begin{array}{cc} 0_{(p-q) \times q} \\ {\bar{F}_q } \\ \end{array} } \right] }_{\bar{F}_2 }} \\ \end{array} } \right] \nonumber \\= & {} 0, \end{aligned}$$
(65)

where this development gives the importance of the dimension condition \(q<p<n\). Then from (65), we get

$$\begin{aligned} \bar{F} = \bar{G} (\bar{C}\bar{G} )^{ - 1} \bar{C}\bar{F}. \end{aligned}$$
(66)

So it is clear that rank \(\left( {\bar{C}\bar{F}} \right) \) must be equal to rank \(\left( {\bar{F}} \right) \) where the assumption A1 appears. Also \(0<h(t)\le h_m\) then replacing the time-varying delay by \(e^{-h_{m}s}\) and using the Eqs. (62) and (65) then the dynamic of the error (61) is assured by:

$$\begin{aligned} \left[ {I_n - {\bar{G}} ({\bar{C}}{\bar{G}} )^{ - 1}{\bar{C}}} \right] \left[ {\bar{A}} - {\bar{K}} {\bar{C}} +{\bar{A}}_{h}e^{-h_{m}s} \right] = \left[ {\begin{array}{c@{\quad }c} {\maltese _1 } &{} {\maltese _2} \\ 0_{p \times (n-p)} &{} 0_{p \times p} \\ \end{array} } \right] , \end{aligned}$$
(67)

where

$$\begin{aligned} \maltese _1 = \left( \bar{A}_{11}+ \bar{A}_{h11} e^{-h_{m}s}\right) + L_q \left( \bar{A}_{211}+\bar{A}_{h211} e^{-h_{m}s}\right) \end{aligned}$$

and

$$\begin{aligned} \maltese _2 =\left( \bar{A}_{12} +\bar{A}_{h12} e^{-h_{m}s}\right) + \bar{L}\left( \bar{A}_{22}+ \bar{A}_{h22} e^{-h_{m}s}\right) . \end{aligned}$$

Consequently, it is clear that from the Eq.(67), the sliding dynamic is governed by the radii matrix \(\maltese _1\) which is stable, and then, the sliding surface \(S_g\) is taken in finite time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulaabi, I., Sellami, A. & Hmida, F.B. Robust Delay-Derivative-Dependent Sliding Mode Observer for Fault Reconstruction : A Diesel Engine System Application. Circuits Syst Signal Process 35, 2351–2372 (2016). https://doi.org/10.1007/s00034-015-0148-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0148-8

Keywords