Abstract
This study addresses the identification of Hammerstein CAR systems with backlash, where the nonlinear backlash is described as one regression identification model using a two switching function mathematical model. In such a case, the Hammerstein CAR systems with backlash can be transformed into a piecewise linearized model. Then, a novel multi-innovation recursive least squares algorithm with a forgetting factor is applied to estimate the parameters of the proposed model. Finally, numerical examples are presented to test the performance of the proposed algorithm.
Similar content being viewed by others
References
A. Barreiro, A. Banos, Input-output stability of systems with backlash. Automatica 42(6), 1017–1024 (2006)
S. Bittanti, P. Boizern, M. Campi, Convergence and exponential convergence of identification algorithms with directional forgetting factor. Automatica 26(5), 929–932 (1990)
V. Cerone, D. Regruto, Bounding the parameters of linear systems with input backlash. IEEE Trans. Autom. Control 52(3), 531–536 (2007)
J. Chen, X. Wang, R. Ding, Gradient based estimation algorithm for Hammerstein systems with saturation and dead-zone nonlinearities. Appl. Math. Model. 36(1), 238–243 (2012)
F. Ding, P.X. Liu, G.J. Liu, Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises. Signal Process. 89(10), 1883–1890 (2009)
F. Ding, Several multi-innovation identification methods. Digit. Signal Proc. 20(4), 1027–1039 (2010)
F. Ding, X.H. Wang, Q.J. Chen, Y.S. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-015-0190-6
F. Ding, T. Chen, Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007)
F. Ding, J. Ding, Least squares parameter estimation with irregularly missing data. Int. J. Adapt. Control Signal Process. 24(7), 540–553 (2010)
F. Ding, X.P. Liu, Parameter estimation with scarce measurements. Automatica 47(8), 1646–1655 (2011)
R. Dong, Q.Y. Tan, Y.H. Tan, Recursive identification algorithm for dynamic systems with output backlash and its convergence. Int. J. Appl. Math. Comput. Sci. 19(4), 631–638 (2009)
T.R. Fortescue, L.S. Kershenbaum, B.E. Ydstie, Implementation of self tuning regulators with variable forgetting factors. Automatica 17(6), 831–835 (1981)
Y. Gao, H. Li, M. Chadli, H.K. Lam, Static output-feedback control for interval type-2 discrete-time fuzzy systems. Complexity (2014). doi:10.1002/cplx.21617
Y. Gao, P. Shi, H. Li, S.K. Nguang, Output tracking control for fuzzy delta operator systems with time-varying delays. J. Franklin Inst. 352, 2951–2970 (2015)
L.L. Han, F. Ding, Identification for multirate multi-input systems using the multi-innovation identification theory. Comput. Math. Appl. 57(9), 1438–1449 (2009)
L.L. Han, F. Ding, Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digit. Signal Proc. 19(4), 545–554 (2009)
A. Janczak, Identification of Nonlinear Systems Using Neural Networks and Polynomial Models: A Block-Oriented Approach, vol. 310 (Springer, New York, 2004)
A.K. Kohli, A. Rai, Numeric variable forgetting factor RLS algorithm for second-order volterra filtering. Circuits Syst. Signal Process. 32(1), 223–232 (2013)
S.H. Leung, C.F. So, Gradient-based variable forgetting factor RLS algorithm in time-varying environments. IEEE Trans. Signal Process. 53(8), 3141–3150 (2005)
Y. Li, S. Tong, T. Li, Adaptive fuzzy output feedback control of uncertain nonlinear systems with unknown backlash-like hysteresis. Inf. Sci. 198(1), 130–146 (2012)
X.L. Li, L.C. Zhou, R. Ding, Auxiliary model-based forgetting factor stochastic gradient algorithm for Dual-rate nonlinear systems and its application to a nonlinear analog circuit. Circuits Syst. Signal Process. 33(6), 1957–1969 (2014)
H. Li, C. Wu, P. Shi, Y. Gao, Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. (2014). doi:10.1109/TCYB.2014.2371814
Y. Li, S. Tong, T. Li, Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1240 (2015)
H. Li, Y. Gao, L. Wu, H.K. Lam, Fault detection for T-S fuzzy time-delay systems: delta operator and input-output methods. IEEE Trans. Cybern. 45(2), 229–241 (2015)
H. Li, X. Sun, L. Wu, H.K. Lam, State and output feedback control of a class of fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2014.2387876
H. Li, C. Wu, L. Wu, H.K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2413134
H. Li, Y. Pan, Q. Zhou, Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame. IEEE Trans. Fuzzy Syst. 23(3), 719–725 (2015)
Y. Li, S. Tong, Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead zone. IEEE Trans. Fuzzy Syst. 22(5), 1341–1347 (2014)
Y.J. Liu, Y.S. Xiao, X.L. Zhao, Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput. 215(4), 1477–1483 (2009)
Y. Liu, L. Yu, F. Ding, Multi-innovation extended stochastic gradient algorithm and its performance analysis. Circuits Syst. Signal Process. 29(4), 649–667 (2010)
L. Ljung, Recursive identification algorithms. Circuits Syst. Signal Process. 21(1), 57–68 (2002)
J. Ma, F. Ding, Recursive relations of the cost functions for the least-squares algorithms for multivariable systems. Circuits Syst. Signal Process. 32(1), 83–101 (2013)
X.Y. Ma, F. Ding, Gradient-based parameter identification algorithms for observer canonical state space systems using state estimates. Circuits Syst. Signal Process. 34(5), 1697–1709 (2015)
L. Márton, B. Lantos, Control of mechanical systems with Stribeck friction and backlash. Syst. Control Lett. 58(2), 141–147 (2009)
C. Paleologu, J. Benesty, S. Ciochina, A robust variable forgetting factor recursive least-squares algorithm for system identification. IEEE Signal Process. Lett. 15(10), 597–600 (2008)
J. Qiu, G. Feng, H. Gao, Static-output-feedback \(H_\infty \) control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)
J. Qiu, H. Tian, Q. Lu, H. Gao, Nonsynchronized robust filtering design for continuous-time T-S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43(6), 1755–1766 (2013)
J. Qiu, Y. Wei, H.R. Karimi, New approach to delay-dependent \(H_\infty \) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Franklin Inst. 352(1), 189–215 (2015)
J. Qiu, S. Ding, H. Gao, S. Yin, Fuzzy-model-based reliable static output feedback \(H_\infty \) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2457934
P. Rostalski, T. Besselmann, M. Barić, F.V. Belzen, M. Morari, A hybrid approach to modelling, control and state estimation of mechanical systems with backlash. Int. J. Control 80(11), 1729–1740 (2007)
S. Tong, S.S. Sui, Y. Li, Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)
J. Vörös, Modeling and parameter identification of systems with multisegment piecewise-linear Characteristics. IEEE Trans. Autom. Control 47(1), 184–188 (2002)
J. Vörös, Modeling and identification of systems with backlash. Automatica 46(2), 369–374 (2010)
J. Vörös, Identification of nonlinear cascade systems with time-varying backlash. J. Electr. Eng. 62(2), 87–92 (2011)
J. Vörös, Parametric identification of systems with general backlash. Informatica 23(2), 283–298 (2012)
T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2411671
Y.J. Wang, F. Ding, Iterative estimation for a nonlinear IIR filter with moving average noise by means of the data filtering technique. IMA J. Math. Control Inf. (2016). doi:10.1093/imamci/dnv067
X.H. Wang, F. Ding, Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems. Int. J. Adapt. Control Signal Process. (2016). doi:10.1002/acs.2642
W.C. Yu, N.Y. Shih, Bi-loop recursive least squares algorithm with forgetting factors. IEEE Signal Process. Lett. 13(8), 505–508 (2006)
J.B. Zhang, F. Ding, Y. Shi, Self-tuning control based on multi-innovation stochastic gradient parameter estimation. Syst. Control Lett. 58(1), 69–75 (2009)
R. Zhang, P. Li, A. Xue, A. Jiang, S. Wang, A simplified linear iterative predictive functional control approach for chamber pressure of industrial coke furnace. J. Process Control 20(4), 464–471 (2010)
R. Zhang, A. Xue, S. Wang, Dynamic modeling and nonlinear predictive control based on partitioned model and nonlinear optimization. Ind. Eng. Chem. Res. 50(13), 8110–8121 (2011)
R. Zhang, A. Xue, S. Wnag, J. Zhang, An improved state space model structure and a corresponding predictive functional control design with improved control performance. Int. J. Control 85(8), 1146–1161 (2012)
R. Zhang, J. Lu, H. Qu, F. Gao, State space model predictive fault-tolerant control for batch processes with partial actuator failure. J. Process Control 24(5), 613–620 (2014)
R. Zhang, F. Gao, State space model predictive control using partial decoupling and output weighting for improved model/plant mismatch performance. Ind. Eng. Chem. Res. 52(2), 817–829 (2013)
L. Zhou, X. Li, F. Pan, Gradient-based iterative identification for Wiener nonlinear systems with non-uniform sampling. Nonlinear Dyn. 76(1), 627–634 (2014)
Acknowledgments
This work was supported in part by the National High Technology Research and Development Program of China (China 863 Program) (Nos. 2014AA041505, 2013AA040405), the National Natural Science Foundation of China (Nos. 61572238, 61573167), the Chinese State Grain Administration Commonwealth Research Project (No. 201313012), and the Fundamental Research Funds for the Central Universities (No. JUSRP51310A).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, Z., Wang, Y. & Ji, Z. A Multi-innovation Recursive Least Squares Algorithm with a Forgetting Factor for Hammerstein CAR Systems with Backlash. Circuits Syst Signal Process 35, 4271–4289 (2016). https://doi.org/10.1007/s00034-016-0271-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0271-1